Passive Sensing of Soil Moisture over Forested Terrain

Roger Lang George Washington University Washington, DC USA

Talk Outline

- Data collection, modeling and measurements will discussed for the following three campaigns:
 - 1. Howland Hemlock Forest in Maine
 - 2. Loblolly Pines, Southern Virginia
 - **3.** Paulownia trees, Maryland Tobacco Farm and Virginia Pines NASA/GSFC

L-Band Active and Passive Sensing of Soil Moisture through Forests

R Lang, C Utku GWU N Chauhan NPOESS/NOAA D Le Vine NASA/GSFC

Howland Forest

Experiment Site Description

- Location: Howland Maine, USA
- 200x200m² of mature hemlock trees
- Forest Height: 15 meters
- Forest Biomass: 28.8 kg/m²
- NASA JPL AIRSAR flights: July 1989-90
- NASA GSFC PBMR flight: July 1990
- Ground measurements made in July, 1989 and July, 1990 by GW and NASA/GSFC investigators

Hemlock Forest Model

Sampling Strategy (200m by 200m plot)

TREE TYPE

DBH Distribution of Trunks

Model Trunk and Branch Sizes

	BRANCH AND	TREE PARAME	TERS
Branch Type	Dia. (cm)	Length (cm)	Probability
AA	0.2	15	0.86684
вв	0.4	30	0.10312
СС	0.6	40	0.01605
DD	0.8	75	0.00619
A	1.1	90	0.00481
В	2.4	165	0.00154
С	3.0	260	0.00119
D	3.5	350	0.00025
Trunk Type	Dia. (cm)	Length (cm)	Probability
т	5.4	430	0.529
Τ2	10.9	915	0,255
Т3	19.4	1390	0.148
T4	27.7	1460	0.068

Surface Correlation Function

Hemlock Forest Model

Bistatic Scattering Coefficients Distorted Born Approx.

$$\sigma^{\rm o} = \sigma^{\rm o}_{\rm d} + \sigma^{\rm o}_{\rm dr} + \sigma^{\rm o}_{\rm drf} + \sigma^{\rm o}_{\rm s}$$

where

$$\sigma_{\rm d}^{\rm o} = \left(\sum_{\rm i} \rho_{\rm i} {\rm d} \sigma_{\rm d}^{\rm (i)}\right) \left[\frac{1 - e^{-2\tau}}{2\tau}\right] \quad {\rm direc}$$

irect or volume scatter

and

Direct-Reflected (Average Surface)

interference or double bounce

$$\sigma_{dr}^{o} = \sum_{i} \rho_{i} d\sigma_{dr}^{(i)} R_{g} e^{-2\tau} \left[2 + 2 * U(bs + sp) \right]$$

 $\sigma_{\rm dr}^{\rm (\it i)}$ - bistatic scattering X section

 $R_{\scriptscriptstyle q}\,$ - average reflectivity of the surface

$$\mathbf{R}_{g} = \left| \Gamma_{g} \right|^{2} e^{-(2k\sigma_{h}\cos\theta_{o})^{2}}$$

 $\Gamma_{\!g}\,$ - Fresnel reflection coefficient of the ground

Directed-Reflected (Surface Fluctuations)

$$\sigma_{drf}^{o} = \sigma^{++} + \sigma^{+-} + (\sigma^{-+} + \sigma^{--})U\{bs + sp\}$$
$$\left\langle \left(v^{+} + v^{-}\right)\left(v^{+*} + v^{-*}\right)\right\rangle$$

 $\sigma^{\scriptscriptstyle ++},\sigma^{\scriptscriptstyle --}$ - incoherent(transport) terms

$$\sigma^{ imes extsf{--}}, \sigma^{ imes extsf{-+}}$$
 - coherent terms

Typical term

Non-specular scatter from surface

Surface Scatter

$$\sigma_{\rm s}^{o} = \sigma_{\rm s}^{(Kir)} e^{-2\tau}$$

 $\sigma_{s}^{(Kir)}$ - Kirchhoff rough surface scattering coefficient

Peake's Principle

:absorbtion coefficient

Howland Forest Model Parameters

- Layer Thickness = 15 m
- Moisture of Scatterers

MG(Needles & Sec-Brch) = 50%

MG(Pri-Brch) = 25%

MG(Trunks) = 50%

• Surface Parameters

S.D. = 0.24 m

Correlation Length = 1.0 m

MV = 30%

Howland Helmlock Attenuation

	P-Band		L-B	and	C-Band	
	Н	V	Н	V	Н	V
Needles	3.2	4.5	5.6	7.9	19.8	27.4
Secondary Branches	0.5	0.8	1.2	1.6	7.1	9.7
Primary Branches	5.9	4.9	10.7	9.1	9.8	9.3
Trunks	3.7	8.8	4.2	6.2	4.2	4.6
Total	13.3	19.0	21.7	24.8	40.9	51.0

NASA/JPL AIRSAR

Frequencies 440MHz (P band), 1.25GHz (L band), 5.00 GHz (C band) Polarizations HH, VV, HV and phase Ground Resolution – 30 meters (1989-90)

NASA P3 Aircraft

Push Broom Microwave Radiometer (PBMR) H-POL 1.43 GHz

Model and Experiment Comparison

L-Band Radar (1.25 GHz)	НН	VV	HV
Experiment (dB)	-8.4	-9.0	-13.4
Theory (dB)	-8.3	-8.7	-15.4

L-Band Radiometer (1.43 GHz)	Н	V
Experiment (K)	255	***
Theory (K)	261	262

Brightness Temperature vs View Angle

Brightness Temperature vs Soil Moisture

Brightness Temperature vs Soil Moisture

ESTAR and Model Brightness Temperatures over Forests: Effects of Soil Moisture

R.H.Lang, C.Utku, P.Matthaeis Dept. Of Electrical & Computer Eng., The George Washington University

N. Chauhan

NOAA, NPOESS Integrated Program Office

D.M.Le Vine

Goddard Space Flight Center, Microwave Sensor Branch

Outline

- Site Description and Instrumentation
- Ground Truth Data
- Model Description
- Inversion Results

ESTAR

Frequency : L-band (1.4 GHz) Polarization : Horizontal Imaging Along Track : Real Aperature Cross Track : Synthetic Aperature Sensitivity : 0.5 K Resolution : ± 4 degrees (nadir)

Site Description

- Location : South Eastern Virginia
- Forest Region : Loblolly Pine, owned by International Paper
- Stands : Uniform on mostly flat ground, 1-2 km on one side
- Stand Age : Varies from 2-40 years with some older sites

Topographic Map of Waverly Site

Sites of various ages in Waverly

Two year old trees at site # 1

Eighteen year old trees at site # 5

Seven year old trees at site # 2

Huge old trees at site # 6

Waverly Virginia Forest Stand Statistics and Brightness Temperatures

SITE	AGE (Years)	AREA (Acres)	TERRAIN	SOIL TYPE	BIOMASS (Tons/ha)	T _B (°K)	σ_{T} (° K)		
1	2	167	Flat	В	20.0	231	5		
2	7	120	Flat	В	66.1	252	2.6		
3	11	133	Flat	А	103.3	253	2		
4	12	404	Hilly	С	113.3	261	1		
5	18	141	Flat	В	161.2	263	1.3		
6	70+	50	Flat	В	220+	273	4		
A-Poorly	A-Poorly drained sandy loam. B-Moderately well drained sandy loam. C-Well drained loamy sand								

Soil Moisture Measurements

- Forest floor consisted of an organic litter layer over sandy loam.
- At each site, the wet and dry weights of the litter and soil layers were measured. 'A' is the sample area.
- Volume of litter and soil samples were measured.
 All samples had D = 5 cm.
- 10 sites were measured for each overflight.

Modeling the Litter Layer

- Litter is an organic layer composed mostly of needles (some bark and decomposed branches).
- Litter layer is modeled by a dense distribution of randomly oriented needle shaped wood particles with moisture.

wood particles with moisture W%

Particle and Macroscopic Dielectric Constants of Litter

Dielectric Constant of Moist Wood Particles vs. dry wood density ρ_w (T = 20° C, F = 1.4 GHz)

W(%) ρ _w	20	60	100	140
0.3	2.44 + i0.23	4.37 + i0.59	8.18 + i1.02	12.06 + i0.98
0.4	2.92 + i0.36	5.71 + i1.03	10.80 + i1.81	15.85 + i1.71
0.5	3.40 + i0.53	6.97 + i1.57	13.38 + i2.80	19.75 + i2.66

Macroscopic Dielectric Constant of Litter vs. fractional volume v_f ($P_w = 0.4 \text{ g/cm}^3$)

W(%) V _f	W(%) 20 6		100	140
0.3	1.45 + i0.07	1.95 + i0.18	2.78 + i0.29	3.58 + i0.27
0.4	1.62 + i0.10	2.37 + i0.26	3.62 + i0.44	4.83 + i0.41
0.5	1.81 + i0.14	2.83 + i0.36	4.58 + i0.61	6.29 + i0.57

Dielectric Constant of Soil

- Calculated using the Dobson formula, IEEE GRS-23, p. 35-46, 1985
- Soil consists of dry rock particles, air, bound H_2O and free H_2O

$$\varepsilon_s = \varepsilon_s(T, f, m_g \%, \rho_{bs})$$

- $m_g(\%)$: gravimetric soil moisture
 - $\hat{\rho}_{bs}$: soil bulk density
- T = temperature
- f = frequency

Dielectric Constant of Soil (T = 20° C, F = 1.4 GHz, P_{bs} = 1.1 g/cm³)

т _g (%)	10	20	30	40	
\mathcal{E}_{S}	5.54 + i0.80	10.50 + i1.34	16.94 + i1.99	24.77 + i2.73	

Reflectivity from Forest Surface

Aug. – 27

107

6.0 + i0.93

28

15.54 + i1.85

July – 7

53

5.25 + i0.92

25

13.54 + i1.65

W (%)

 \mathcal{E}_{LT}

m_g(%)

 \mathcal{E}_{s}

Table: Layer Moistures and Permittivities ($v_f = 0.54$, $\rho_{bs} = 1.1$ g/cm³)

Nov. – 15

126

7.05 + i0.92

36

21.48 + i2.42

Nov. – 30

133

7.44 + i0.89

35

20.69 + i2.35

Soil

$$P_{inc} = 1 \qquad \uparrow \qquad P_{ref} = \Gamma \Gamma^* : reflectivity$$

$$Litter$$
Soil

Reflectivity of Forest Surface (continued)

Tree Architecture

DBH Distribution

Branch Distribution

Average stem density = 0.186 stems/m²

Model Parameters

• Dielectric Constants

Trunks and Branches : $\mathcal{E}_r = 10.5 + i3.0$ Needles : $\mathcal{E}_r = 20.7 + i7.0$

• Surface Properties

RMS height : $\sigma = 3.0 \text{ cm}$ Correlation Length : $\ell = 100.0 \text{ cm}$

Wakefield Temperature History on the Dates of Flights in 1999

TEMPERATURE HISTORY: Waverly 1999; Circles = time of flights

Measured Brightness Temperatures for APR and APM sites

	July 7	Aug. 27	Nov. 15	Nov. 30
APR (2-year old stands)	265.5	252.0	233.0	235.0
APM (18-year old stands)	281.2	272.0	263.0	262.0
Wakefield Temperatures	302.4	299.1	286.3	276.3
Ground Truth Temperatures	N/A	N/A	N/A	284.5

Brightness Temperature depends on stand age.

- Maximum change in brightness temperature between July and November is higher for APR.
- This indicates the higher visibility of soil moisture through smaller trees.

The Relation between Brightness Temperature, Physical Temperature and Soil Moisture

$$T_B = (1 - w)T$$

where

$$w = w^{diff} + w^{spec}$$

with

$$w^{spec} = \left| R_g \right|^2 e^{-2\tau} e^{-4k_o^2 s^2 \cos^2 \theta_i}$$
$$w^{diff} = \frac{1}{4\pi \cos \theta_i} \int_{4\pi} \left[\sigma^o_{hh}(\underline{o}, \underline{i}) + \sigma^o_{vh}(\underline{o}, \underline{i}) \right] d\Omega_s$$

Bistatic Scattering Coefficients

 $\sigma_{pq} = \sigma_{pqd} + \sigma_{pqdr} + \sigma_{pqs}$

d: direct or volume scatter

s : surface scatter

: two way attenuation coefficient

Comparison of Model Results with ESTAR Data

Note : Brightness temperatures averaged over litter layers of 0.5 cm to 5 cm in 0.5 cm increments.

Microwave Soil Moisture Retrieval Under Trees

Peggy O'Neill, Alicia Joseph NASA / GSFC

Roger Lang, Mehmet Kurum George Washington University

Michael Cosh, Thomas Jackson USDA / ARS

ComRAD – Combined radar / radiometer instrument system

Radiometer Measurement Setup

The truck boom is rotated in a conical scan arrangement with a 15 degree increment to get an average response over trees.

			15 ⁰		
PLOT C	PLOT B				
	411114	2	Area	Plot B 33 x 33 m	Plot C 28 x 28 m
A AND A			# trees in plot	92	92
			Average DBH (cm)	19.4	18.2
A A GE	ComRAD	-	Range in VSM (%) [Apr – Nov, 2007]	30-45	33 – 44

Tree Destructive Sampling

Туре	Count	Avg Radius cm	Avg Length cm	dry biomass density	Avg Inclination Angle (up = 0)
Trunk	1	8.73	617.00	0.3938	vertical
Primary-1	1	4.80	171.00	0.7032	Uniform 05-15
Primary-2	1	3.84	12.00	1.2750	Uniform 10-30
Primary-3	1	4.22	245.00	1.0917	Uniform 00-10
Secondary -1	248	0.32	17.95	0.4675	Uniform 20-50
Secondary -2	67	0.41	52.93	0.5079	Uniform 20-50
Secondary -3	9	0.46	94.33	0.4065	Uniform 10-40
Secondary -4	26	0.60	27.31	0.3935	Uniform 35-55
Secondary -5	67	0.64	59.25	0.4248	Uniform 30-50
Secondary -6	53	0.71	114.81	0.5813	Uniform 35-55
Secondary -7	3	1.28	14.33	0.3302	Uniform 35-55
Secondary -8	10	1.30	66.20	0.3665	Uniform 20-40
Secondary -9	34	1.58	153.79	0.5070	Uniform 30-50
Туре	Count	leaf area cm2	Leaf Thickness cm	dry biomass density	Avg Inclination Angle (up = 0)
Leaf	2014	324.90	0.28	0.2561	Uniform 0-360

Detailed measurements of size/angle distributions of the tree constituents trunk, branches, and leaves), water content and dry biomass.

Down-welling Emission From Layer Reflected by Ground

VEGETATION EMISSION MODELS

Zeroth Order Solution (*tau-omega model*)

2 Simplified Zeroth Order Solution

 $e_a^{(S0)} \sim \left[1 - R_{G,q}(\theta)\gamma_q^2\right]$

$$e_q^{(0)} = \begin{bmatrix} 1 - R_{G,q}(\theta)\gamma_q^2(\theta) \end{bmatrix} \\ - \underbrace{\omega_{s,q} \begin{bmatrix} 1 - \gamma_q(\theta) \end{bmatrix} \begin{bmatrix} 1 + R_{G,q}(\theta)\gamma_q^2(\theta) \end{bmatrix}}_{(1 + R_{G,q}(\theta)\gamma_q^2(\theta))}$$

Reduction Due to Albedo

3 First Order Solution (*Successivie order of scattering*)

An iterative solution of the RT equation up to the first order [kurum et al., 2009].

 $e_q^{(1)}(\theta) = e_q^{(0)}(\theta) + \{\text{Scattering Term}\}$

Due to the single interaction between particle and emission from the ground and the layer

Radiometer Angular Response from a Forest Canopy (Models vs Data)

Effective Albedo

$$e_{q}^{(1)}(\theta) = e_{q}^{(0)}(\theta) + \{ \underbrace{Scattering \ Term} \} \\ \underbrace{\text{Expanding}}_{\mathbf{Q}_{q}} \\ e_{q}^{(0)} = e_{q}^{(S0)}(\theta) - \omega_{s,q} \left[1 - \gamma_{q}(\theta) \right] \left[1 + R_{G,q}(\theta) \gamma_{q}(\theta) \right] + \Omega_{q} \\ e_{q}^{(0)} = e_{q}^{(S0)}(\theta) - \left[\omega_{s,q} - \frac{\Omega_{q}}{\left[1 - \gamma_{q}(\theta) \right] \left[1 + R_{G,q}(\theta) \gamma_{q}(\theta) \right]} \right] \left[1 - \gamma_{q}(\theta) \right] \left[1 + R_{G,q}(\theta) \gamma_{q}(\theta) \right] \\ \underbrace{\omega_{eff}^{(q)} \leftarrow \text{Effective Albedo}}_{e_{ff}^{(0)} = e_{q}^{(S0)}(\theta) - \omega_{eff}^{(G)} \left[1 - \gamma_{q}(\theta) \right] \left[1 + R_{G,q}(\theta) \gamma_{q}(\theta) \right] \\ \end{bmatrix}$$

Effect of Soil Moisture

- The two days in proximity to each other (May 18 and May 24) are chosen
 - the tree state does not change
 - soil moisture conditions change.
- For both H and V pol
 - emissivity curves are shifting up as soil moisture decreases.

- For a fixed physical temperature of T = 300 K,
 - the change in brightness temperature for 10 % change in VSM is ~ 11 K.

Solid (H-pol) and dashed (V-pol) lines are the <u>curve</u> <u>fit</u> results and individual triangles (May 24) and squares (May 18) are the measured values.

Effect of Season on the Radiometer Response

Full Canopy (August)

Spring Green-up (April)

Spring Green-Up vs Fully Foliated Conditions

Solid (H-pol) and dashed (V-pol) lines are the <u>curve fit</u> results and triangles (Apr. 10) and squares (Aug. 06) are the measured values.

Effect of Biomass on the Radiometer Response

COMRAD TREE EXPERIMENT – APEX '08 AND '09 CONIFER TREES

Combined Radar/Radiometer Instrument System

Frequency: 1.403 - 1.424 GHz
 Radiometers;

1.25 GHz radar

- Antenna: 1.22 m parabolic dish w/broadband feed
- Incidence Angle Range: 0° 175°
- Azimuth Angle Range: 0° 120° autonomous 0° – 360° manual

Location: Greenbelt, Maryland

ComRAD deployed at natural stand of Virginia pine trees (~ 12 m tall)

NATURAL VIRGINIA PINE TREE SITE AT GODDARD GEOPHYSICAL AND ASTRONOMICAL OBSERVATORY (GGAO)

GPS LOCATION : +39° 1' 21.37", -76° 49' 28.87"

FOREST FLOOR CHARACTERISTICS

	Litter	Humus	L+H
Thicknes s	[cm]	[cm]	[cm]
Mean	0.8	2.2	3.0
Stdev	0.3	0.9	1.1

Soil Bulk Density : Organic Layer Bulk Density : Sandy Loam Soil : 13.6% clay	1.11 g/cm ³ 0.15 g/cm ³ 57% sand,
Surface Roughness : Moisture Range : volumetric content (VMC)	σ = 0.5 cm 5% - 30% moisture
LITTER	organic
MINERAL SOIL (Sandy Loam)	mineral

A picture from the Pine Forest Floor An illustration of the Pine Forest Floor

Litter layer after removal

Litter layer before removal

IMPACT OF LITTER LAYER ON THE OBSERVED EMISSIVITY - PLOT A, $\Theta = 25^{\circ}$

Effect of Litter Layer on Observed Emissivity

Change in TB with Change in Soil Moisture

Conclusions & Recommendations

- Same tau-omega equation can be used for remote sensing of forests with an appropriate tau and omega.
- Dependence of tau and omega on forest type and age should be studied.
- One should study how you treat heterogeneous pixels when scattering is important.
- Litter can mask the underlying soil moisture particularly for conifer stands.
- Models of litter should be checked with measurements.