Soil Moisture Scaling Function Development for the Little River Experimental Watershed

Michael H. Cosh¹, David D. Bosch², Alisa Coffin², Thomas J Jackson¹, Andreas Collander³, Steven Chan³, Rajat Bindlish⁴, Wade T. Crow¹, and Simon Yueh³

¹USDA-ARS-Hydrology and Remote Sensing Laboratory
²USDA-ARS-Southeast Watershed Research Laboratory
³NASA Jet Propulsion Laboratory
⁴NASA Goddard Space Flight Center
Primary calibration and validation approach is utilization of dense in situ soil moisture measurements (multiple soil moisture measurement within the 3-km to 36-km SMAP footprint).

Supplemental approach will utilize large-scale sparse networks (one measurement within footprint), and global remote sensing and model-based soil moisture data products.
Climate class: Temperate (Cfa)

Landcover: Cropland/natural mosaic

Soil texture:
- **S-%:** 80
- **C-%:** 7
- **BD:** 1.47

Algorithm Performance Metrics:*

<table>
<thead>
<tr>
<th>Alg.</th>
<th>ubRMSE</th>
<th>Bias</th>
<th>RMSE</th>
<th>R</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA-H</td>
<td>0.045</td>
<td>0.068</td>
<td>0.082</td>
<td>0.758</td>
<td>1.301</td>
</tr>
<tr>
<td>SCA-V</td>
<td>0.036</td>
<td>0.115</td>
<td>0.121</td>
<td>0.782</td>
<td>1.144</td>
</tr>
<tr>
<td>DCA</td>
<td>0.049</td>
<td>0.195</td>
<td>0.201</td>
<td>0.538</td>
<td>0.792</td>
</tr>
</tbody>
</table>

In Situ
protocols for soil moisture measurement and monitoring

Scaling Function

- Arithmetic
- Voronoi
- Physical Sampling
- Model Matchup
- Temp Network
protocols for soil moisture measurement and monitoring

Wet Forest - 25%
Forest - 20%
Agriculture et al. - 55%
protocols for soil moisture measurement and monitoring
protocols for soil moisture measurement and monitoring

Temp Network in early summer of 2017
Interrupted at harvest 2017
Many reinstalled for the winter of 2017-18
protocols for soil moisture measurement and monitoring
protocols for soil moisture measurement and monitoring

\[y = 1.284x + 0.018 \]

\[R^2 = 0.5909 \]
protocols for soil moisture measurement and monitoring
protocols for soil moisture measurement and monitoring

Scaling Function

Voronoi

Temporary Network

Weighted Average Soil Moisture (WASM)

New SM = f(WASM)

New_WASM = 0.25*0.1864*ln(WASM)+0.7387 + 0.2*(1.2566*WASM+0.0186) + 0.2*(0.747*WASM+0.0441) + 0.35*(0.715*WASM - 0.0044)

New_WASM = Wetland Forest + Dry Forest + Irrigated Crop + Non-irrigated Crop
Climate class: Temperate (Cfa)
Landcover: Cropland/natural mosaic
Soil texture:
S-%: 80
C-%: 7
BD: 1.47

Alg. ubRMSE Bias RMSE R Slope
SCA-H 0.045 0.068 0.082 0.758 1.301
SCA-V 0.036 0.115 0.121 0.782 1.144
DCA 0.049 0.195 0.201 0.538 0.792
In Situ

Black: Use recommended [Retrieval Quality Flag bit(0)=0]
Climate class: Temperate (Cfa)
Landcover: Cropland/natural mosaic
Soil texture:
S-%: 80
C-%: 7
BD: 1.47

Black: Use recommended [Retrieval Quality Flag bit(0)=0]
Gray: Retrieval attempted and succeeded but use not recommended [bit(0)=1, bit(1)=0, bit(2)=0]
Green: Retrieval attempted but failed [bit(0)=1, bit(1)=0, bit(2)=1]
Cyan: Retrieval not attempted [bit(0)=1, bit(1)=1]