Time-variable vegetation biases in the SMAP soil moisture product

S. Zwieback, A. Colliander, M. Cosh, J. Martínez-Fernández, H. McNairn, P. Starks, M. Thibeault & A. Berg

23 October 2018 SMAP CalVal Workshop

Time-variable biases

- Large spurious changes in sensitivity to soil moisture
- Associated with imperfect vegetation correction

Particularly pronounced over croplands

Variability in sensitivity (λ)

Ideally: constant sensitivity $\rightarrow \lambda = 0$

- 1 Predicted biases
- 2 Results: Time-variable biases
- 3 Results: Distortion of vegetation-moisture coupling
- 4 Summary
- 5 Background information

Erroneous vegetation correction induces biases

$$\Delta \tau = \tau_{\rm inv} - \tau_{\rm true}$$
 error in the vegetation correction in retrieval

$$y = L(\theta - \theta_0) + \theta_0 + M + \varepsilon$$

L: multiplicative bias (sensitivity), M: additive bias

Predicted biases

can be large

linear in $\Delta \tau$ (\approx)

independent of τ (\approx)

Modelling time-variable biases associated with Δau

$$L(t) = I + \lambda w_{\Delta \tau}(t)$$

$$M(t) = m + \mu w_{\Delta \tau}(t)$$

 $w_{\Delta \tau}$ normalized 0 mean, 1 stdev

λ and μ : bias variability

temporal association with Δau magnitude: temporal variability

sign: predicted positive

Estimating time-variable biases

Triple collocation extended to non-constant error structures

- no error-free reference product
- in-situ, re-analysis (Merra 2), SMAP

Take reference τ from SMOS (smoothed)

- 1 Predicted biases
- 2 Results: Time-variable biases
- 3 Results: Distortion of vegetation-moisture coupling
- 4 Summary
- 5 Background information

Large changes in sensitivity compared to in-situ networks

Changing sensitivity at SMAP network sites

Sensitivity varies by 10 - 40% ($|\lambda|$ of 0.1 - 0.4)

 $\lambda >$ 0, as predicted by au- ω model

Spatial patterns: sparse in-situ sites

- 1 Predicted biases
- 2 Results: Time-variable biases
- 3 Results: Distortion of vegetation-moisture coupling
- 4 Summary
- 5 Background information

Larger coupling for SMAP than for in-situ

 $\Delta R^2 = R_{\mathrm{SMAP}\theta,\tau}^2 - R_{\mathrm{in-situ}\theta,\tau}^2$ computed from anomalies

Distorted coupling estimates

larger coupling than with in-situ random noise would reduce R^2 patterns match those of biases

- 1 Predicted biases
- 2 Results: Time-variable biases
- 3 Results: Distortion of vegetation-moisture coupling
- 4 Summary
- 5 Background information

Implications

Biases

- impede seasonal and inter-annual comparisons
- extremes most affected (e.g. drought)
- distort estimates of vegetation-water coupling

Summary

- Widespread and large time-dependent biases over croplands
- Associated with imperfect vegetation correction
- Can distort estimates of vegetation—water coupling

Bayesian triple collocation: Model structure

