

Soil Moisture
Active Passive
Mission
SMAP

Cal/Val Workshop #9

October 22-23, 2018

Andreas Colliander¹, Mike Cosh²

1) Jet Propulsion Laboratory, California Institute of Technology

2) USDA ARS Hydrology and Remote Sensing Laboratory

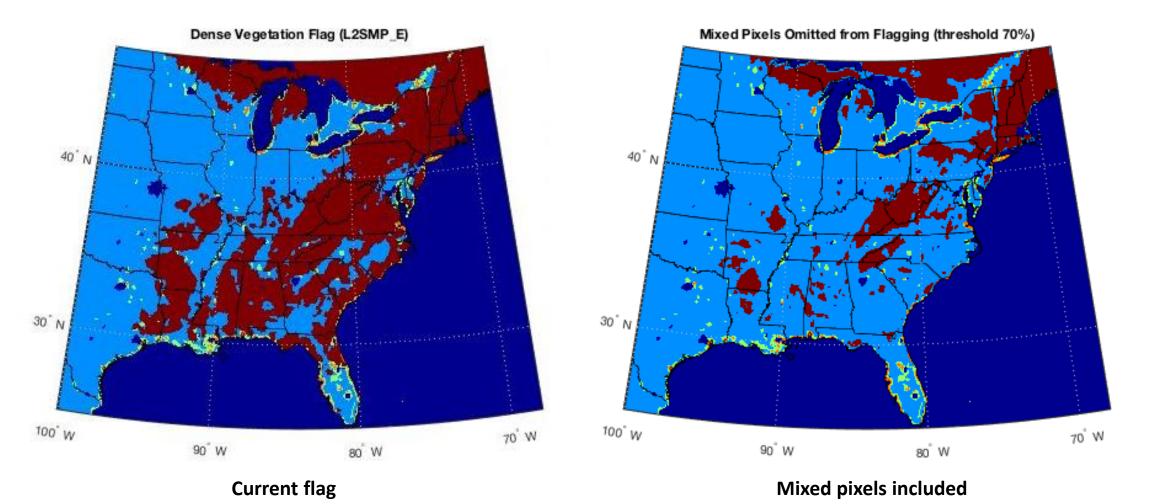
Background

- Extended mission objectives include expanding the retrieval domain
- About one third of the Earth's land mass is covered by forests
- Forests represent a major carbon storage where soil moisture has a significant influence on the uptake and release of carbon

SMAP Mission Cal/Val Methodologies

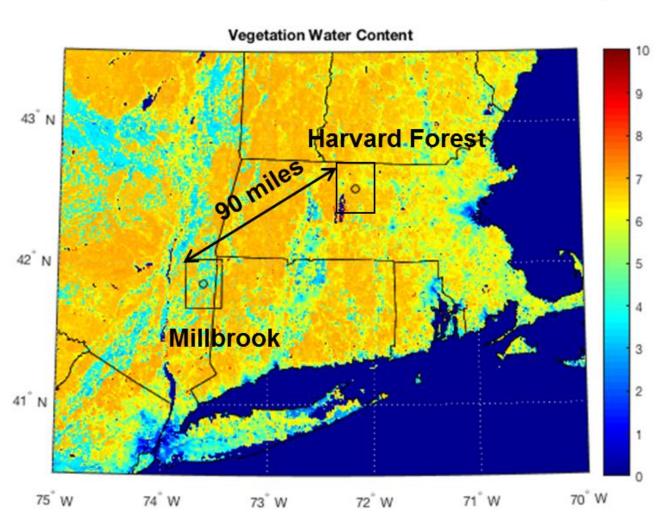
(F	Methodology	Role
	Core Validation Sites	Accurate estimates of products at matching scales for a limited set of conditions
	Sparse Networks	One point in the grid cell for a wide range of conditions
	Satellite Products	Estimates over a very wide range of conditions at matching scales
	Model Products	Estimates over a very wide range of conditions at matching scales
	Field Campaigns	Detailed estimates for a very limited set of conditions

Objectives


- 1. Improved retrieval of soil moisture for biomes with high levels of vegetation
 - a. Define algorithm approach; determine and validate algorithm parameters (specific focus on temperate forests)
 - b. Understand microwave interaction in the vegetation and ground (with respect to algorithm forward model)
 - c. Based on the observed range of TB at some forest sites, achieving a highly accurate estimate of soil moisture a challenge => 2-tier approach: study mixed pixels and fully vegetated pixels separately
- Provide a basis for evaluating new disaggregation approaches (SMAP-Sentinel product)

Objectives

• Resolving soil moisture under mixed pixel conditions (similar to Millbrook) will allow "unmasking" of majority of dense vegetation flag in the Eastern US



Approach

- The focus will be on deciduous forest type (boreal forests may come in the future); the experiment will be located in the Northeast US
- The experiment will feature airborne mapping of two SMAP radiometer resolution cells several times over the growing cycle
- Harvard Forest and Millbrook sites will provide both homogeneous fully forested and mixed landscapes (mixed landscape covers a large fraction of high biomass areas)

Design Outline

- **IOP1**: 3 weeks mid-summer peak vegetation
 - Airborne coverage: 7 SMAP & 2 Sentinel-1 overpasses
- **IOP2**: 1 week in the fall before snow, dry leaves
 - Airborne coverage: 3 SMAP & 1 Sentinel overpasses
- Instrumentation
 - PALS (Passive/Active L-band System)
 - Tower-based active/passive
- Ground measurements
 - Soil moisture temporary networks: installed in early 2019
 - Soil moisture manual sampling
 - Vegetation characterization

PALS flights and resolution

PALS Acquisition Plan:

10 flight lines with 1500 m altitude (AGL)

- => ~750 m resolution (2.5 hours per box)
- Captures the forest vs non-forest heterogeneity
- Compatible with the highest SMAP-Sentinel resolution of 1 km

Overpass schedule

July

У	Date	SMAP AM	Sentinel
	7/5		
	7/6	X	
	7/7		
г	//8		Н
	7/9	X	
	7/10		
	7/11	X	
	7/12		
	7/13		M
	7/14	X	
	7/15		
	7/16		
	7/17	Х	
	7/18		
	7/19	Х	
	7/20		Н
	7/21		
	7/22	Х	
	7/23		
	7/24		
	7/25	Х	M
	7/26		
	7/27	X	
	7/28		
	7/29		
	7/30	Х	
	7/31		
	8/1		Н
	8/2	Х	
	8/3		
	8/4	Х	

October

r	•	DateH	SMAP AM	Sentinel
		10/18	Х	
		10/19		
		10/20		
		10/21	Х	
	_	10/22		
		10/23	Х	
		10/24		Н
		10/25		
		10/26	Х	
		10/27		
		10/28		
		10/29	Х	M
		10/00		
		10/31	Х	
		11/1		
		11/2		
		11/3	Х	
		11/4		
		11/5		Н
		11/6	Х	
		11/7		
		11/8	Х	
		11/9		
		11/10		М
		11/11	Х	
		11/12		
		11/13		
		11/14	Х	
		11/15		
		11/16	Х	
		11/17		Н

H-Harvard Forest M-Millbrook

Algorithm input for vegetation

- The prioritization of the ground sampling is largely driven by algorithm forward model and some other models (for helping to understand the interactions)
- The current baseline algorithm (SCA-V) has three relevant inputs:
 - Forest category -> b and w
 - VWC (NDVI climatology based) -> tau
 - Temperature
- Conceivable input parameters for a new algorithm:
 - Forest type (better defined class)
 - Tree height/Biomass (would account structure variation within class)
 - VWC (tau variability)
 - Temperature

SMAPVEX19 - Organizations

Org	Responsibilities
JPL	SMAPExperiment leadPALSNISARUAVSAR
USDA	Temporary networks Ground operations lead Soil measurements lead
Michigan Tech	Vegetation measurements lead
Cary Institute	Facilities at Millbrook domain
Harvard Forest & NEON	Facilities at Harvard Forest domain
U. Quebec	Tower-based radiometer
NOAA CREST	Tower-based radiometer

Science Questions

- Developing a set of science questions that the measurements can help to answer
- For example:
 - How does the seasonal variation in surface SM influence canopy phenology, productivity and CO2 in the eastern deciduous forests?
 - What is the relationship between SM variability, atmospheric humidity and the associated moisture constraints on forest productivity and carbon fluxes?
 - How microwave opacity captures plant water storage dynamics (stress and non-steady hydraulics in the soil-plant-atmosphere continuum)?
- Input appreciated also on this front!

We are looking for volunteers for ground sampling