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Abstract 

A robust and simple algorithm is developed to merge L-band radiometer retrievals 

and L-band radar observations to obtain high-resolution (9 km) soil moisture estimates 

from data of the NASA Soil Moisture Active and Passive (SMAP) mission.  The 

algorithm exploits the established accuracy of coarse-scale radiometer soil moisture 

retrievals and blends this with the fine-scale spatial heterogeneity detectable by radar 

observations to produce a high-resolution optimal soil moisture estimate at 9 km.  The 

capability of the algorithm is demonstrated by implementing the approach using the 

airborne Passive and Active L-band System (PALS) instrument dataset from Soil 

Moisture Experiments, 2002 (SMEX02) and a four-month synthetic data set in an 

Observation System Simulation Experiment (OSSE) framework. The results indicate that 

the algorithm has potential to obtain better soil moisture accuracy at a high resolution, 

and show an improvement in root-mean-square-error of 0.015 to 0.02 cm3/cm3 

volumetric soil moisture over the minimum performance taken to be retrievals based on 

radiometer measurements re-sampled to a finer scale. These results are based on PALS 

data from SMEX02 and four-months of OSSE dataset, and need to be further confirmed 

for different hydroclimatic regions using airborne dataset from prelaunch 

calibration/validation field campaigns of the SMAP mission.  

 

Index Terms 

SMAP, L-band, radiometer, radar, soil moisture
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1. Introduction 

Soil moisture is a land state variable that controls several water cycle fluxes, 

namely runoff, evapotranspiration, and deep drainage. In addition, soil moisture 

modulates the energy cycle through exchanges of energy between the atmosphere and the 

land surface. Soil moisture and its freeze/thaw state are also key determinants of the 

carbon exchange at the land surface. Thus, global measurements of soil moisture are vital 

to understanding the components and interactions between the global water, energy and 

carbon cycles. Satellite-based microwave remote sensing is the most promising technique 

for providing global measurements of near-surface soil moisture, with frequent revisit, 

and independent of clouds and solar illumination. Many satellite-based microwave 

instruments, e.g., the Scanning Multichannel Microwave Radiometer (SMMR), Special 

Sensor Microwave Imager (SSM-I), and Advanced Microwave Scanning Radiometer 

(AMSR-E) have demonstrated this capability. However, these sensors operate at C-band 

(~6 GHz) and higher frequencies, and their soil moisture retrievals are significantly 

affected by even small amounts of vegetation cover.  The recently launched Soil Moisture 

and Ocean Salinity (SMOS) mission of the European Space Agency will be the first 

wide-swath L-band soil moisture mission, and has the potential for retrieving soil 

moisture over a much higher range of vegetation conditions. The measurements from 

these radiometer instruments have coarse spatial resolution >40 km, which is sufficient 

for hydroclimate applications. However, for hydrometeorological applications soil 

moisture measurements of ~10 km spatial resolution [1] or better are required with a 

temporal resolution of 3 days or less.  The ~10 km resolution requirement is also derived 

from several applications in hydrologic and atmospheric science, which have 
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distinguishing features or significant physical interactions at the hydrometeorological 

(~10 km) scale. The spatial resolution of ~10 km is estimated as a multiple of the 

blending height in the atmosphere. Hydrometeorological events such as precipitating 

systems and thermal convection are affected by near-surface atmospheric variations. For 

example, there is evidence that irrigation in Nebraska has changed the amount of 

precipitation in Iowa, and irrigation in Texas has led to an increase in tornado activity [2]. 

Availability of a ~10 km soil moisture product would enhance understanding and forecast 

capabilities of regional weather systems around the world. Furthermore, it is anticipated 

that within the 2010-2015 time frame global numerical weather prediction (NWP) models 

will be implemented on a 10 km grid scale. Soil moisture is a prognostic and a boundary 

condition in these NWP models. The accuracy/skill of the forecasts for a given NWP 

model depends largely on model initialization and boundary conditions. Numerous data-

denial experiments have demonstrated the influence of accurate soil moisture 

initialization and boundary condition on the forecast skill of variables such as 

precipitation, air temperature, air humidity, cloudiness, etc. NWP Centers currently use 

climatology or soil moisture accounting model estimates (forced with surface 

precipitation, surface incident radiation, etc.).  The availability of fine scale (~10 km) soil 

moisture data will also benefit agriculture-related applications and large watershed or 

river-basin management activities. Realizing the importance of fine resolution, global soil 

moisture measurements, the National Research Council’s Committee on Earth Science 

and Applications from Space recommended the Soil Moisture Active and Passive 

(SMAP) mission, with the objective to produce soil moisture data products for 

hydrometeorological applications, as one of four recommended first-tier missions [3]. In 
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2008 NASA selected SMAP for development [4]. The mission is targeted for launch in 

2014. 

The SMAP instrument architecture incorporates an L-band radar (frequency: 1.26 

GHz; polarizations: HH, VV, HV) and an L-band radiometer (frequency: 1.41 GHz; 

polarizations: H, V, U) that share a single feedhorn and parabolic mesh reflector. The 

reflector (diameter: 6 m) is offset from nadir and rotates about the nadir axis at 14.6 rpm, 

providing a conically-scanning antenna beam with a constant surface incidence angle of 

approximately 40°. SMAP will be launched into a 680 km near-polar, sun-synchronous 

orbit with an 8-day repeat cycle and Equator crossings at 6 am and 6 pm local time. At 

this altitude, the antenna scan configuration yields a 1000-km swath, with a 40 km 

radiometer resolution and 1-3 km synthetic aperture radar (SAR) resolution (over the 

outer 70% of the swath) that provides global coverage within 3 days at the Equator and 2 

days at boreal latitudes (>45°N). The primary requirement of SMAP is to provide 

estimates of soil moisture in the top 5 cm of soil with an accuracy of 0.04 cm3/cm3 

volumetric soil moisture, at 10 km resolution, with 3-day average intervals over the 

global land area excluding regions of snow and ice, mountainous topography, open water, 

and vegetation with total water content greater than 5 kg/m2.  

The expected suite of products from the SMAP mission is shown in Table 1. In 

this paper we address primarily the soil moisture products. The Level 2 radiometer-only 

soil moisture product (L2_SM_P) is derived principally from the brightness temperature 

product (L1C_TB).  L-band radiometer algorithms for soil moisture retrieval are well 

established, with less error and better quantification of uncertainties under vegetated 

conditions than radar algorithms [5]; however radiometers suffer from coarse spatial 
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resolution (~40 km for SMAP).  The radar-only soil moisture (L2_SM_A) is a fine-

resolution (3 km) soil moisture product derived from the Hi-Res radar backscatter data 

(L1C_S0_HiRes).  Studies (e.g., [6]) have shown that soil moisture measurements 

derived from radar backscatter have uncertainty/errors that are sensitive to even sparse 

vegetation cover. This makes radar soil moisture retrievals less useful in vegetated areas 

for applications with high accuracy requirements.  Radar backscatter is highly influenced 

by surface roughness, canopy structure, and vegetation water content (VWC) in addition 

to soil moisture. Roughness and vegetation effects significantly reduce the sensitivity of 

radar backscatter to soil moisture.   

For the above reasons, neither the SMAP radiometer nor the radar can 

individually meet the SMAP requirements for soil moisture spatial resolution (10 km) 

and accuracy (0.04 cm3/cm3). We propose here an algorithm that overcomes these 

limitations by merging the active (radar) and passive (radiometer) measurements to 

derive a 9 km soil moisture product (L2_SM_A/P) that meets the SMAP requirements. 

The algorithm is based on the radar capability to detect high-resolution soil moisture 

spatial variability within the coarse-resolution radiometer L2_SM_P grid. The algorithm 

approximates as near-linear the relationship between L-band radar backscatter and 

volumetric soil moisture for both bare and vegetated surfaces.  The relationship is 

described by a regression slope that is determined from time series radar co-polarized 

backscatter (L1C_S0_HiRes) and volumetric soil moisture (L2_SM_P) data.  The 

feasibility of using time series data to compute the regression slope has been 

demonstrated in [7]-[9].  To estimate the soil moisture for L2_SM_A/P, the relative 

backscatter difference within the coarse grid of L2_SM_P is then constrained with the 
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regression slope and the higher-accuracy L2_SM_P soil moisture.  The following section 

elaborates the mathematical formulation of the algorithm, and discusses the novelty of 

this approach with respect to other time series algorithms [8], [9].  

 

2. Active/Passive Retrieval Algorithm  

For clarity, we first define general grid topologies, mathematical operators, and 

terms used in the mathematical formulation.  Figure 1 elaborates the nested grid topology 

of the L2_SM_P (36 km), L1C_S0_HiRes (3 km), and desired merged Active/Passive 

L2_SM_A/P (9 km) products.  For convenience in mathematical formulation, the naming 

convention of ‘C’ (coarse), ‘F’ (fine), and ‘M’ (medium) for the L2_SM_P, 

L1C_S0_HiRes, and L2_SM_A/P grid scales, respectively, is used throughout this 

section. It is seen from the grid topology (Fig. 1) that within a single (nc = 1) 36 km x 36 

km pixel of grid C there are n = 16 pixels of grid M, nf  = 144 pixels of grid F, and m = 9 

i.e, number of F grid cells within M.   

Two linear operators used frequently in the mathematical formulation are defined 

as: 

Spatial average operator:   ∫= dax
A

x
1

 

Spatial anomaly operator:   xxx −=δ   

Here, A is the area of a larger pixel and a is the area of a smaller pixel within A; 

Relationships between co-polarized radar backscatter at L-band and C-band and 

volumetric soil moisture have been discussed in [5]-[7].  At L-band, a near-linear 

relationship was found using truck-mounted radar data collected during the Washita 92 

field experiment [7].  A linear relationship between radar backscatter at L-band and 
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volumetric soil moisture was also reported for airborne observations in the Soil Moisture 

Experiment, 2002 (SMEX02) [8].  The formulation of the algorithm discussed here is 

based on such a linear relationship.  We use the hypothesis that the volumetric soil 

moisture and co-polarized backscatter are linearly related through: 

θ(t) =α + βlog[σ (t)]        (1) 

At a given scale, α and β are parameters that depend on vegetation cover and type as well 

as surface roughness.  They vary seasonally and can be estimated at scale C using SMAP 

L2_SM_P and L1C_S0_HiRes data time-series as regressant and regressors as in 

θ(C,t) =α(C)+ β(C) log[σ (Mn,t)]       (2) 

Here, σ(Mn,t) is co-polarized radar backscatter at spatial scale M, and θ(C,t) is volumetric 

soil moisture at spatial scale C.  In this section log represents 10log10. The co-polarized 

backscatter σ(Mn,t) is obtained by aggregating σ(Fm,t) within M, which is effective for 

reducing speckle noise.  The estimation of parameters α(C) and β(C) uses a time 

sequence of SMAP data, implying that this is a time-series approach.  The algorithm 

takes advantage of the conical scan and constant look-angle of the antenna beam 

approach of SMAP.  Except where azimuthal effects are significant, the constant look-

angle reduces the variations in the α(C) and β(C) parameters.  

Formulation of the algorithm begins with the hypothesized linear relationship 

between volumetric soil moisture and co-polarized radar backscatter at spatial scale M, so 

that (1) can be written as  

θ(Mn,t) =α(Mn)+ β(Mn )log[σ (Mn,t)]  (3) 
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where α(Mn) and β(Mn) are empirical parameters at spatial scale of M, and θ(Mn,t) is a 

soil moisture value at a spatial scale of M and at time t for a particular pixel within C.  By 

spatially averaging both side of (3), we obtain: 

θ(Mn ,t) = α(Mn ) + β(Mn ) log[σ (Mn,t)]

 = α (Mn ) + β(Mn )log[σ (Mn,t)]
 (4) 

Subtracting (4) from (3) gives 

δθ(Mn,t) = θ(Mn ,t) − θ(Mn ,t)

=α (Mn ) + β(Mn )log[σ (Mn ,t)] − α (Mn ) − β(Mn )log[σ (Mn,t)]

= α(Mn ) − α(Mn ){ }+ β(Mn )log[σ (Mn,t)] − β(Mn ) log[σ (Mn,t)]{ }
 (5) 

A major assumption is now introduced that allows development of a robust 

algorithm, but at the cost of increased error due to land cover heterogeneity.  It is 

assumed that significant variations in the parameters α(Mn) and β(Mn) related to 

vegetation type, vegetation cover and surface roughness are homogeneous within C. In 

this case α(Mn ) = α(Mn ) =α(C) andβ(Mn ) = β(Mn ) = β(C).  Now (5) becomes:  

δθ(Mn,t) = β(C) log[σ (Mn,t)]− log[σ (Mn,t)]{ } (6) 

The complete algorithm for the hydrometeorological scale (9 km) soil moisture ( )t,M nθ  

can then be written using (5), (6), and θ(Mn,t)  = θ(C,t) , as 

θ(Mn,t) = θ(C,t) + δθ(Mn,t)

= θ(C,t) + β(C) log[σ (Mn,t)] − log[σ (Mn,t)]{ } (7) 

The parameter β(C) is based on the time-series regression in (2).  This is similar to the 

determination of time-series regression parameters discussed in [8].  θ(C,t) in (2) and (7) 

are obtained from the SMAP L2_SM_P product, log[σ (Mn,t)] and its spatial average 

log[σ(Mn,t)]  are obtained from the SMAP L1C_S0_HiRes product, and then linear 

regression is performed to obtain β(C). The main assumption of the algorithm concerning 
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the scales of heterogeneity of parameter β can be relaxed as the repeated application of 

the algorithm shows a consistent relationship between β and vegetation/surface 

characteristics.  Results from Du et al. [10] indicate that the relative sensitivity of L-band 

co-polarized radar channels depends primarily on the vegetation canopy opacity (i.e., 

vegetation water content).  Simulations conducted by [9] for L-band co-polarized radar 

backscatter using the integral equation model show that surface roughness variability has 

a lesser effect on the radar soil moisture sensitivity. Airborne field experiment data and 

theoretical models can be used to derive the dependence of co-polarized radar backscatter 

on vegetation.  With such a relationship, high-resolution ancillary data on vegetation 

(e.g., an optical/infrared vegetation index or VI) or a radar vegetation index (RVI) [7] 

derived from SMAP co- and cross-polarized radar data, can be used to adjust the slope 

parameter β at scale M as in: 

β(Mn,t) = f [β(C),VI] (8) 

Preliminary experiments with numerical simulations and field data indicate that it is 

indeed possible to formulate such a relationship that will reduce errors of the algorithm.  

In this study we use the original version of the algorithm given in (7) in order to estimate 

and understand the upper bound of error in the algorithm. 

 

3. Test Datasets 

 There are few real and synthetic data sets available to test the algorithm 

developed here specifically for SMAP mission.  Prominent among the available data are 

the Passive and Active L-band System (PALS) [11] data set from the SGP99, SMEX02, 

CLASIC and SMAPVEX08 field experiments, and the Hydros Observation System 
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Simulation Experiment (OSSE) data set [12], [13]. The PALS sensor is an airborne 

instrument and has a spatial resolution of approximately 0.4 km (depending on flight 

altitude). The PALS dataset from SMEX02 is used initially to test the algorithm. The 

reason of using the PALS SMEX02 dataset is the availability wet and dry soil moisture 

status, and range of vegetation conditions within the PALS flight domain for the 

campaign duration. PALS was flown over the SMEX02 region (the Walnut Creek 

watershed, Iowa) for eight days during the months of June and July, 2002. However, to 

fully test the algorithm performance a synthetic dataset covering a longer time series and 

a larger regional extent is required. Therefore, the four-month (April 1st, 1994 to July 31st, 

1994) OSSE data set created for the Hydros mission was also utilized for algorithm 

testing. The OSSE data were created by simulating high-resolution land surface 

geophysical variables from a distributed land surface model (TOPLATS) within the Red-

Arkansas river basin. The basin domain and simulation period incorporate a diverse range 

of land cover classes and soil moisture values. The geophysical variables were used to 

derive simulated brightness temperatures and radar backscatter cross-sections over the 

basin according to the Hydros sensor observational configuration (the same configuration 

used by SMAP). The simulated sensor measurements, with appropriate instrument and 

environmental noise added, were then inverted to retrieve soil moisture using various 

retrieval algorithms. The forward models used to derive brightness temperatures and 

radar backscatter cross-sections are described in detail in [12] and [13]. A caveat of using 

the forward model as mentioned in [12] and [13] to compute radar backscatter cross-

sections is that it does not include the influence of vegetation structure pertaining to 

different crop types. 
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 The OSSE generated geophysical variables and simulated sensor observations at a 

spatial resolution of 1 km. Subsequently, the brightness temperatures and radar 

backscatter cross-sections were aggregated with appropriate errors to simulate the SMAP 

observations at the radiometer (36 km) and radar (3 km) resolutions. The radiometer-only 

soil moisture product (L2_SM_P) is derived from the aggregated 36-km brightness 

temperature [12]. The accuracy of the retrieved L2_SM_P soil moisture product varies 

with vegetation water content (VWC).  For this study we assigned a Root-Mean-Square-

Error (RMSE) to the 36-km soil moisture values of 0.01 to 0.04 cm3/cm3, linearly with 

increasing VWC from 0 to 5 kg/m2, based on the results of [12].  The radar backscatter 

cross-sections were aggregated to 3 km and a measurement error of Kp = 0.16 was added 

to simulate the SMAP 3-km radar L1C_S0_HiRes measurements.  These data were then 

spatially aggregated from 3 km to 9 km for input to the algorithm. Kp is the radar 

normalized measurement relative error that depends on the signal-to-noise ratio (SNR) 

and the number of independent samples or 'looks' averaged in each measurement. 

Additional synthetic experiments were conducted by adding Kp  error values of 0.18, 0.2, 

and 0.22 to evaluate the sensitivity of the output soil moisture product (9 km) to Kp errors 

in ( )tM n ,σ . The results and performance of the algorithm based on these inputs are 

discussed in the next section. 

 

4. Retrieval Results  

4.1. Test of Algorithm using SMEX02 PALS data  

This study applies the PALS SMEX02 dataset to the Active/Passive algorithm 

(Section 2). PALS L-band radar and radiometer have similar frequencies and incidence 
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angle like SMAP, however, PALS have much finer spatial resolution (~0.8 km). To apply 

the Active/Passive algorithm, the PALS data were gridded at different resolutions, for 

radiometer at ~4 km and radar at ~0.8 km. The combination of   and σvv data from 

PALS data was considered for Active/Passive algorithm because of higher degree of 

correlation observed between them. Figure 2 illustrates degree of correlation between  

 and  for different possible combinations of radar and radiometer data obtained 

from the PALS data of SGP99, SMEX02, CLASIC and SMAPVEX08, which clearly 

indicates a better result for  and . Therefore soil moisture retrieved from is 

expected to correlated better with .  

Soil moisture (θ at 4 km) is retrieved from  at 4 km resolution using a 

microwave emission (Tau-omega) model that is based on a layered single scattering 

model commonly used for passive microwave sensing at L-band [5]. Ancillary data (e.g., 

surface soil temperature, soil roughness, vegetation water content) of SMEX02 were used 

to run the microwave emission model. Figure 3 shows the gridded  (4 km) and 

corresponding retrieved θ(4 km) as shown in Fig. 3a and 3c. The values of β are 

estimated using regression on pairs of   and  for every 4 km grid 

cells over the SMEX02 duration. The regression yields an error of estimation as well as 

the expected statistical slope β. The robustness of β is subjected to the number of 

available   and  data pairs. For SMEX02 dataset there are 8 such 

pairs that lead to slightly larger error of estimation for β. However, the derived β was 

used in the Active/Passive soil moisture disaggregation algorithm (7) for all the sixteen 4 

km grid cells within the PALS domain, to disaggregate θ (4 km) to obtain high resolution 

θ at 0.8 km (Fig. 3d).  
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To validate the retrieved soil moisture estimates at 0.8 km resolution, the field 

averaged soil moisture calculated from in situ measurements in 31 fields over 4 days (5th 

July, 2002 to 8th July, 2002) are used (Fig. 4). The representative spatial resolution of a 

field is nearly ~0.8 km making the comparison compatible. It is obvious from Fig. 4 that 

even with slightly higher error of estimation for β the Active/Passive algorithm (RMSE: 

0.035 [cm3/cm3]) outperforms the minimum performance (RMSE: 0.048 [cm3/cm3]). The 

minimum performance is a reference for comparison. It is essentially a resampling of soil 

moisture at θ (4 km) to finer scale (0.8 km) without use of information from the radar. 

With decrease in error of estimation for β or in other words increasing the number of data 

pairs (  and ) will enhance the robustness of β and consequently 

decrease the RMSE in the disaggregated high resolution soil moisture estimates. Results 

from this study establish the applicability of Active/Passive algorithm. However, this 

study does not address the impact of different levels of noise in radar data on the 

Active/Passive algorithm because the PALS radar data have a very low noise floor level 

(~-40 [dB]). The subsequent subsection that utilizes the synthetic data discuss the impact 

of different levels of noise in radar data on the Active/Passive algorithm. 

 

4.2. Test of Algorithm using Synthetic Data 

The Active/Passive algorithm was applied on all the 36-km pixels of the Red-

Arkansas river domain of the OSSE data (as described in the Section 3), to evaluate the 

slopes ( )Cvvβ  and ( )Chhβ  from the co-polarized (VV and HH) backscatter ( )t,Fmvvσ  

and ( )t,Fmhhσ , respectively.  A higher correlation for VV than HH was found between 

the aggregated σ Fm,t( ) and ( )t,Cθ  in the observing system simulation fields.  Hence, 
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outputs based on σ vv Fm,t( ) input to the algorithm yield slightly lower RMSE errors than 

for ( )t,Fmhhσ , in agreement with the results of [8].  Figure 5 illustrates a sample of the 

ground truth soil moisture at 9 km, the radiometer-only coarse resolution soil moisture at 

36 km, the co-polarized radar backscatterσ vv Fm,t( ) at 3 km, the algorithm-retrieved high 

resolution soil moisture ( )tMvv ,θ  at 9 km based on ( )Cvvβ , and VWC at 36 km for DOY 

130, 1994.  The retrieval result (Fig. 5d) shows that the algorithm captures the higher-

resolution soil moisture variability otherwise masked by the radiometer-only coarse 

resolution soil moisture estimates (Fig. 5b), and exhibits the correct spatial patterns seen 

in the ‘truth’ soil moisture (Fig. 5a).  

For the 122-day duration of the OSSE simulation the RMSE of the retrieved soil 

moisture outputs at 9-km resolution were computed to evaluate the algorithm 

performance.  Figure 6 shows the temporal evolution of the standard deviation (Std. 

Dev.) and mean of the retrieved soil moisture field, and the retrieval RMSE, averaged for 

each day over the entire river basin (OSSE domain).  The algorithm captures the typical 

soil moisture dynamics (Fig. 6), in which the standard deviation increases with initial 

drydown due to increasing spatial variability, and then gradually decreases because of dry 

soil surface conditions. At a regional scale, the algorithm also displays the robustness by 

constraining the regional RMSE fluctuations within a range of ~2.8 – 3.3% Vol. soil 

moisture for a corresponding range of ~7 – 12% and ~16 – 32% Vol. soil moisture in 

regional standard deviation and mean, respectively. It is also interesting to see that the 

regional RMSE stays close to 3% Vol. soil moisture for the whole duration of the study 

period.  
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The next logical step was to evaluate the improvement of the high-resolution soil 

moisture fields at 9 km derived from the active/passive algorithm (L2_SM_A/P) over the 

‘minimum performance’ fields that could be derived using radiometer-only 

measurements. Minimum performance soil moisture field were obtained by re-sampling 

the radiometer-only soil moisture values at 36 km (L2_SM_P) to high resolution 9 km 

pixels. The soil moisture values at 36 km (L2_SM_P) represent an average estimate, and 

to evaluate the minimum performance against the algorithm results, the soil moisture 

values at 36 km are assigned to all 9 km pixels that fall within 36 km pixel. So, all the 16 

pixels of 9 km resolution that are within 36 km pixel have the same soil moisture values. 

Hence, the minimum performance estimates at 9 km do not capture the underlying 

heterogeneity (variability) that is identified by the algorithm using the high resolution 

radar backscatter. A pixel-wise soil moisture RMSE was computed over the river basin 

for minimum performance (Fig. 7a) and algorithm retrieval (Fig. 7b) for the whole 

duration of the OSSE.  Visual comparison of Fig. 7a and Fig. 7b shows an obvious 

improvement in soil moisture estimates when the active/passive retrieval algorithm is 

used.  To quantify the improvement, a ratio of algorithm-based soil moisture RMSE to 

minimum performance RMSE is shown in Fig. 7c.  The algorithm estimates outperform 

the radiometer only estimates (ratio less than one) over most of the river basin.  In some 

parts of the basin the RMSE ratio is close to unity.  These are the eastern and western 

forested regions where the radar sensitivity to soil moisture is low due to the high VWC 

(Fig. 5e). Apart from these regions the active/passive algorithm estimates are 

considerably superior to the radiometer-only estimates.  
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An additional analysis was conducted to examine the impact of vegetation.  The 

spatial patterns in the retrieval errors are correlated with the distribution of vegetation 

within the river basin.  Figure 8 plots retrieved soil moisture RMSE and minimum 

performance soil moisture RMSE stratified by the mean VWC contained within 9 km for 

the duration of OSSE. The algorithm-retrieved soil moisture RMSE shows an 

improvement of 0.01-0.02 cm3/cm3 soil moisture relative to the minimum performance 

RMSE over the entire VWC range.  The general increase in RMSE with increase in VWC 

as observed in Fig. 8 is due to the masking effect of vegetation on the radar sensitivity to 

soil moisture and a positive bias in the retrieval.  The algorithm performs well (RMSE< 

0.04 cm3/cm3) for values of VWC below 4 kg/m2.  A sharp rise in the RMSE is observed 

for VWC values greater than 4 kg/m2.  A partial reason for this is that the algorithm 

performance as tested in this OSSE is susceptible to the low number of 9-km pixels 

having VWC > 2.5 kg/m2 in the OSSE domain.     

The detection of soil moisture variability within a radiometer pixel at 36 km 

depends on the accurate representation of this spatial heterogeneity in the high-resolution 

radar backscatter measurement.  The inherent radar Kp measurement error confounds the 

actual spatial heterogeneity thereby introducing a source of error that requires 

quantification in retrieved soil moisture at 9 km.  A sensitivity analysis of the input Kp 

error was performed and the RMSE results stratified by VWC are shown in Fig. 9.  An 

increase in RMSE with increase of Kp is clearly visible in the plot.  However, the impact 

of increasing Kp on the algorithm is not large.  This is due to the averaging of σ Fm,t( )to 

σ M n,t( ) that reduces the effective Kp.  This analysis reveals that the prominent error in 

the output from the algorithm is the error in ( )tC,θ .   



 

 18

In order to quantify the error due to the assumption on the spatial scale of 

variability in the slope parameter β, an experiment was carried out where β was estimated 

at scale Mn or 9 km (which is possible with the OSSE dataset).  The parameters ( )nMβ  

were then used for the algorithm instead of ( )Cβ  in (7).  The thick dashed lines in Fig. 9 

show that the assumption on the scale of variation of β does increase the RMSE.  The 

increase in the soil moisture RMSE averages about 0.005 cm3/cm3 over the OSSE basin.  

 

5. Discussion and Conclusion   

An algorithm has been proposed in this paper for obtaining high resolution (9 km) 

soil moisture from SMAP coarse scale (36 km) radiometer-based soil moisture estimates 

and fine scale (3 km) radar-based co-polarized backscatter cross-sections.  The approach 

takes advantage of the near-linear relationship between volumetric soil moisture and 

radar backscatter cross-section, and the capability of the high resolution radar backscatter 

to capture the spatial heterogeneity of soil moisture within the radiometer footprint.  The 

algorithm uses time-series information to determine and refine the slope of the linear 

relationship and, unlike in [8] and [9], the algorithm does not require the previous 

satellite overpass observations to estimate the current soil moisture value.   This provides 

greater operational flexibility.  The accumulation of errors over time that is a potential 

feature of [8] is also not encountered in this algorithm. The algorithm output is an 

absolute soil moisture estimate at high resolution that is an improvement over the 

estimation of soil moisture relative change only as proposed by [9].  It is shown that the 

algorithm soil moisture retrieval accuracy relies to a large extent on the accuracy of the 

radiometer-based coarse resolution (36 km) soil moisture inputs, and that the effects of 
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radar backscatter measurement random errors can be significantly reduced by averaging 

to the 9-km scale. The algorithm simulations using the SMEX02 PALS data and synthetic 

four-month OSSE dataset are encouraging and suggest an improvement of nearly 0.015 

to 0.02 cm3/cm3 in soil moisture retrieval accuracy over the minimum performance 

radiometer estimates.  The L2_SM_A/P product is expected to meet the mission criterion 

of 0.04 cm3/cm3 soil moisture accuracy (one-sigma) or better for regions with VWC less 

than 5 kg/m2. A few caveats in the studies performed here should be mentioned:  (1) For 

the OSSE dataset, the confidence in the results for pixels with VWC > 2.5 kg/m2 is 

limited by the low number of these pixels in the OSSE domain.  (2) The RMSE of the 

L2_SM_A/P retrievals at 9 km can never be less than the RMSE of the overlapping 

L2_SM_P radiometer-only soil moisture estimates at 36 km because as an input 

L2_SM_P, the inherent errors in it percolate through the L2_SM_A/P algorithm. (3) 

Further studies are required to test the efficacy of the algorithm using real observational 

data (for example using airborne data sets such as acquired by PALS) obtained from 

different hydroclimatic regions.  

The proposed Active/Passive algorithm can also be applied using radar 

observations at finer scales (e.g., 3 km).  In this case soil moisture at finer scales (e.g. 3 

km) could be estimated.  However, the errors will be considerably higher because: (1) 

without averaging to the intermediate 9 km scale radar speckle noise will be more 

evident, and (2) patchiness in vegetation and azimuthal differences will increase 

significantly.  Preliminary studies using 3 km radar backscatter cross-section from the 

OSSE dataset have been conducted.  Results (not shown) indicate that the soil moisture 

retrievals generally did not meet the SMAP soil moisture accuracy requirement of 0.04 
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cm3/cm3.  Only at rather low VWC levels (< 2 kg/m2) did the 3 km soil moisture fall 

below 0.04 cm3/cm3, but it did not improve on the minimum performance benchmark. 

Therefore our conclusion, based on the current SMAP instrument design, is that 

averaging to an intermediate scale (9 km) between the radar and radiometer resolutions is 

needed for the application of the Active/Passive algorithm. 

The algorithm needs to be tested in larger study domains that include greater 

diversity in surface characteristics and hydroclimatic regions, and to establish optimum 

time windows for determining the algorithm parameters that depend on changing surface 

conditions. To achieve this, future work on this algorithm will include study area for 

different PALS domains and global extent of OSSE that will facilitate to analyze the 

performance of the algorithm for wide range of ground conditions. Future studies will 

also aim at improved parameterization of the sensitivity/slope (β) relationship as a 

function of vegetation characteristics, allowing the effect of vegetation heterogeneity 

within the coarse radiometer footprint to be better addressed.  



 

 21

 
Acknowledgment 

The authors especially thank Dr. Andreas Colliander for providing the processed 

PALS data for this work. The authors also wish to thank the Algorithm Development 

Team of the SMAP project for their guidance and assistance at various stages of this 

work. 

 

 

References 

 [1]  J. D. Albertson and M. B. Parlange, “Natural integration of scalar fluxes from 

complex terrain,” Adv. Water Resources, vol. 23, no. 3, pp. 239–252, 2000. 

 [2] C. P. Weaver, and R. Avissar, “Atmospheric disturbances caused by human  

modification of the landscape,” Bull. Am. Meterol. Soc., vol. 82, pp. 269-281, 

2001. 

[3] “Earth Science and Applications from Space: National Imperatives for the next 

Decade and Beyond,” National Research Council, http://www.nap.edu, 2007. 

[4]  D. Entekhabi, E. G. Njoku, P. E. O’Neill, K. H. Kellogg, W. T. Crow, W. N. 

Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. 

Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran, 

R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. V. Zyl, 

“The Soil Moisture Active Passive (SMAP) Mission,” Proceedings of the IEEE, 

vol. 98,  pp. 704-716, 2010. 

[5]  E. G. Njoku, and D. Entekhabi, “Passive microwave remote sensing of soil 

moisture,” J. Hydrol., vol. 184, pp. 101-129, 1996. 



 

 22

[6] F. T. Ulaby, P. Dubois, and J. V. Zyl, “Radar mapping of surface soil moisture," 

J. Hydrol., vol. 184, pp. 57-84, 1996.  

[7] Y. Kim, and J. van Zyl, “A Time Series Approach to Estimate Soil Moisture 

Using Polarimetric Radar Data,” IEEE Trans. Geosci. Remote Sens. vol. 47, pp. 

2519-2527, 2009.. 

[8] M. Piles, D. Entekhabi, and A. Camps, “A Change Detection Algorithm for 

Retrieving High Resolution Soil Moisture from SMAP Radar and Radiometer 

Observations,” IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 4125-4131, 2009.   

[9]     U. Narayan, V. Lakshmi, and T. J. Jackson, “High resoluiton estimation of soil 

moisture using L-band radiometer and radar observations made during the 

SMEX02 experiments,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 1545-

1554, 2006. 

[10]       Y. Du., F. T. Ulbay, and M. C. Dobson, “Sensitivity to soil moisture by active 

and passive microwave sensors,” IEEE Trans. Geosci. Remote Sens.,vol. 38, pp. 

105-114, 2000. 

[11] W. J. Wilson, S. H. Yueh, S. J. Dinardo, S. Chazanoff, F.K. Li, and Y. Rahmat-

Samii, “Passive Active L- and S-band (PALS) microwave sensor for ocean 

salinity and soil moisture measurements,” IEEE Trans. Geosci. Remote Sens., vol. 

39, pp. 1039-1048, 2001. 

[12] W. T. Crow, S. T. D. Chan, D. Entekhabi, P. R. Houser, A. Y. Hsu, T. J. Jackson, 

E. G. Njoku, P. E. O’Neill, J. Shi, and X. Zhan, “An Observing System 

Simulation Experiment for Hydros Radiometer-Only Soil Moisture Products,” 

IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 1289-1303, 2005. 



 

 23

[13] X. Zhan, P. R. Houser, J. P. Walker, and W. T. Crow, “A Method for Retrieving 

High-Resolution Surface Soil Moisture From Hydros L-Band Radiometer and 

Radar Observations,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 1534-1544, 

2006. 



 

 24

Table 1. Proposed data products from the SMAP mission. 
 

 
 

 

 

 

Data Product 
Short Name 

Description 
Data 
Resolution 

L1B_S0_LoRes Low Resolution Radar σo in Time Order 5x30 km 

L1C_S0_ HiRes High Resolution Radar σo on Swath Grid 1-3 km 

L1B_TB Radiometer TB in Time Order 36x47 km  

L1C_TB Radiometer TB on Earth Grid 36 km 

L2_SM_P Radiometer Soil Moisture  36 km 

L2_SM_A Radar Soil Moisture  3 km 

L2_SM_A/P Active/Passive Soil Moisture  9 km 

L3_F/T_A Daily Global Composite Freeze/Thaw State  1-3 km 

L3_SM_P 
Daily Global Composite Radiometer Soil 
Moisture  

36 km 

L3_SM_A/P 
Daily Global Composite Active/Passive Soil 
Moisture  

9 km 

L4_SM Surface  & Root Zone Soil Moisture  9 km 

L4_C Carbon Net Ecosystem Exchange  1 km 
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Figures 

 

 

Figure 1: Grid topology of radiometer (L2_SM_P), radar (L2_SM_A), and merge 

(L2_SM_A/P) product. Where nf and nm are number of area pixels of radar and 

merged product, respectively, within one radiometer area pixel nc. 
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Figure 2: Correlations between different combinations of  and  with respect to 

radar-vegetation-index (RVI) evaluated from PALS data taken over four field 

experiments. 
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Figure 3: a) Averaged and gridded SMEX02 PALS data (4 km) for 5th July, 2002, b) 

Averaged and gridded  SMEX02 PALS data (0.8 km) for 5th July, 2002, c) 

Retrieved soil moisture estimates from SMEX02 PALS data (4 km) for 5th July, 

2002, and d) Disaggregated soil moisture estimates from Active/Passive algorithm for 

5th July, 2002. 

 

 

Figure 4: Plots of averaged soil moisture from field measurements and retrieved soil 

moisture estimate from PALS data for 4 days. a) Active/Passive algorithm, and b) 

Minimum performance. 
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Figure 5: Surface soil moisture fields of Red-Arkansas river basin on DOY 130, 1994. a) 

Synthetic ground truth soil moisture (9 km), b) Radiometer derived soil moisture (36 

km), c) Radar backscatter ( )t,M nvvσ  with  Kp = 0.16, d) Soil moisture field (9 km) 

obtained from the algorithm, e) VWC (kg/m2)at 36 km resolution, and f) Derived 

slope (β ) between radiometer-based Soil moisture estimate (L2_SM_P) at 36 km and   

( )t,M nvvσ  aggregated to 36 km spatial resolution.  
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Figure 6: Region standard deviation, mean and RMSE computed from algorithm derived 

soil moisture estimates at 9 km for the whole duration of OSSE. The line in 3c 

represents the RMSE using β estimated at 36 km. (Results based on four-months 

synthetic OSSE dataset). 
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Figure 7: a) Pixel-wise average RMSE of minimum performance radiometer only soil 

moisture, b) Pixel-wise average RMSE of algorithm derived soil moisture estimates 

using ( )t,M nvvσ  having Kp = 0.16 and ( )tC,θ  having RMSE of 1 to 4 %Vol. soil 

moisture for pixels having VWC from 0 to 5 kg/m2, respectively, and c) Ratio of 

algorithm-based pixel-wise average RMSE to radiometer only minimum performance 

pixel-wise average RMSE. (Results based on four-months synthetic OSSE dataset). 
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Figure 8: Average RMSE for minimum performance and algorithm derived soil moisture 

estimates stratified by VWC. (Results based on four-months synthetic OSSE dataset). 
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Figure 9: Sensitivity analysis of the input errors in L1C_S0_HiRes subjected to the 

algorithm. The thick dashed line shows the RMSE with β estimated at 9 km. (Results 

based on four-months synthetic OSSE dataset). 


