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Abstract

A robust and simple algorithm is developed to mdrdgand radiometer retrievals
and L-band radar observations to obtain high-réemwlu(9 km) soil moisture estimates
from data of the NASA Soil Moisture Active and Raes(SMAP) mission. The
algorithm exploits the established accuracy of seacale radiometer soil moisture
retrievals and blends this with the fine-scale igpdteterogeneity detectable by radar
observations to produce a high-resolution optinaall moisture estimate at 9 km. The
capability of the algorithm is demonstrated by iempénting the approach using the
airborne Passive and Active L-band System (PALStriniment dataset from Soil
Moisture Experiments, 2002 (SMEXO02) and a four-rhosiynthetic data set in an
Observation System Simulation Experiment (OSSEpéwork. The results indicate that
the algorithm has potential to obtain better sadlisture accuracy at a high resolution,
and show an improvement in root-mean-square-erfor0.015 to 0.02 crcn?
volumetric soil moisture over the minimum perforroariaken to be retrievals based on
radiometer measurements re-sampled to a finer.sthé&se results are based on PALS
data from SMEX02 and four-months of OSSE dataset,reeed to be further confirmed
for different hydroclimatic regions using airbornelataset from prelaunch

calibration/validation field campaigns of the SMA#ssion.
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1. Introduction

Soil moisture is a land state variable that costsdveral water cycle fluxes,
namely runoff, evapotranspiration, and deep dranalp addition, soil moisture
modulates the energy cycle through exchanges ofjgietween the atmosphere and the
land surface. Soil moisture and its freeze/thawestae also key determinants of the
carbon exchange at the land surface. Thus, globakurements of soil moisture are vital
to understanding the components and interactiotwsedas the global water, energy and
carbon cycles. Satellite-based microwave remotsisgns the most promising technique
for providing global measurements of near-surfamé reoisture, with frequent revisit,
and independent of clouds and solar illuminationanlyl satellite-based microwave
instruments, e.g., the Scanning Multichannel Micawer Radiometer (SMMR), Special
Sensor Microwave Imager (SSM-I), and Advanced Mi@we Scanning Radiometer
(AMSR-E) have demonstrated this capability. Howevkese sensors operate at C-band
(-6 GHz) and higher frequencies, and their soil stwwe retrievals are significantly
affected by even small amounts of vegetation coVldre recently launched Soil Moisture
and Ocean Salinity (SMOS) mission of the Europepac8& Agency will be the first
wide-swath L-band soil moisture mission, and has potential for retrieving soil
moisture over a much higher range of vegetatiorditmms. The measurements from
these radiometer instruments have coarse spasalut®n >40 km, which is sufficient
for hydroclimate applications. However, for hydrdewological applications soil
moisture measurements of ~10 km spatial resolytigror better are required with a
temporal resolution of 3 days or less. The ~10r&swolution requirement is also derived

from several applications in hydrologic and atma&spmh science, which have



distinguishing features or significant physicaleirgictions at the hydrometeorological
(~10 km) scale. The spatial resolution of ~10 kmestimated as a multiple of the
blending height in the atmosphere. Hydrometeorahligevents such as precipitating
systems and thermal convection are affected by-si@dace atmospheric variations. For
example, there is evidence that irrigation in Nekeahas changed the amount of
precipitation in lowa, and irrigation in Texas hed to an increase in tornado activity [2].
Availability of a ~10 km soil moisture product wduénhance understanding and forecast
capabilities of regional weather systems aroundatbdd. Furthermore, it is anticipated
that within the 2010-2015 time frame global numalngeather prediction (NWP) models
will be implemented on a 10 km grid scale. Soil stoie is a prognostic and a boundary
condition in these NWP models. The accuracy/sKilthe forecasts for a given NWP
model depends largely on model initialization aoedifdary conditions. Numerous data-
denial experiments have demonstrated the influenfeaccurate soil moisture
initialization and boundary condition on the forsicaskill of variables such as
precipitation, air temperature, air humidity, clingks, etc. NWP Centers currently use
climatology or soil moisture accounting model esties (forced with surface
precipitation, surface incident radiation, etcThe availability of fine scale (~10 km) soil
moisture data will also benefit agriculture-relat@pplications and large watershed or
river-basin management activities. Realizing thpanance of fine resolution, global soil
moisture measurements, the National Research dsuG@mmittee on Earth Science
and Applications from Space recommended the Soilistde Active and Passive
(SMAP) mission, with the objective to produce soiloisture data products for

hydrometeorological applications, as one of foworamended first-tier missions [3]. In



2008 NASA selected SMAP for development [4]. Thesswn is targeted for launch in
2014.

The SMAP instrument architecture incorporates dahed radar (frequency: 1.26
GHz; polarizations: HH, VV, HV) and an L-band raaieter (frequency: 1.41 GHz;
polarizations: H, V, U) that share a single feedhand parabolic mesh reflector. The
reflector (diameter: 6 m) is offset from nadir atlates about the nadir axis at 14.6 rpm,
providing a conically-scanning antenna beam wittoastant surface incidence angle of
approximately 40°. SMAP will be launched into a 886 near-polar, sun-synchronous
orbit with an 8-day repeat cycle and Equator crgssiat 6 am and 6 pm local time. At
this altitude, the antenna scan configuration wiedd 1000-km swath, with a 40 km
radiometer resolution and 1-3 km synthetic apertadar (SAR) resolution (over the
outer 70% of the swath) that provides global cogeraithin 3 days at the Equator and 2
days at boreal latitudes (>45°N). The primary regjuent of SMAP is to provide
estimates of soil moisture in the top 5 cm of sweith an accuracy of 0.04 chom®
volumetric soil moisture, at 10 km resolution, wiBhday average intervals over the
global land area excluding regions of snow andno@yntainous topography, open water,
and vegetation with total water content greaten thag/nf.

The expected suite of products from the SMAP misssoshown in Table 1. In
this paper we address primarily the soil moistur@dpcts. The Level 2 radiometer-only
soil moisture product (L2_SM_P) is derived prindiypdrom the brightness temperature
product (LLC_TB). L-band radiometer algorithms &wmil moisture retrieval are well
established, with less error and better quantiboabf uncertainties under vegetated

conditions than radar algorithms [5]; however raddters suffer from coarse spatial



resolution (~40 km for SMAP). The radar-only soibisture (L2_SM_A) is a fine-
resolution (3 km) soil moisture product derivednirothe Hi-Res radar backscatter data
(L1C_SO_HiRes). Studies (e.g., [6]) have shownt thail moisture measurements
derived from radar backscatter have uncertainty/srthat are sensitive to even sparse
vegetation cover. This makes radar soil moistuteenals less useful in vegetated areas
for applications with high accuracy requiremeni&adar backscatter is highly influenced
by surface roughness, canopy structure, and vaegetatater content (VWC) in addition
to soil moisture. Roughness and vegetation effeigtsificantly reduce the sensitivity of
radar backscatter to soil moisture.

For the above reasons, neither the SMAP radiometar the radar can
individually meet the SMAP requirements for soil istare spatial resolution (10 km)
and accuracy (0.04 éhont). We propose here an algorithm that overcomesethes
limitations by merging the active (radar) and passfradiometer) measurements to
derive a 9 km soil moisture product (L2_SM_A/P)tthaeets the SMAP requirements.
The algorithm is based on the radar capability étect high-resolution soil moisture
spatial variability within the coarse-resolutiordi@meter L2_SM_P grid. The algorithm
approximates as near-linear the relationship betwedand radar backscatter and
volumetric soil moisture for both bare and vegetaseirfaces. The relationship is
described by a regression slope that is determireed time series radar co-polarized
backscatter (L1C_SO_HiRes) and volumetric soil towes (L2_SM_P) data. The
feasibility of using time series data to computee thegression slope has been
demonstrated in [7]-[9]. To estimate the soil mmis for L2_SM_A/P, the relative

backscatter difference within the coarse grid of &®1_P is then constrained with the



regression slope and the higher-accuracy L2_SMilPnsdsture. The following section
elaborates the mathematical formulation of the itlgm, and discusses the novelty of

this approach with respect to other time seriesralgns [8], [9].

2. Active/Passive Retrieval Algorithm

For clarity, we first define general grid topologjienathematical operators, and
terms used in the mathematical formulation. Figuetaborates the nested grid topology
of the L2_SM_P (36 km), L1C_SO_HiRes (3 km), andiel merged Active/Passive
L2_SM_A/P (9 km) products. For convenience in raathtical formulation, the naming
convention of C' (coarse), F' (fine), and M’ (medium) for the L2 SM P,
L1C_SO _HiRes, and L2 SM_A/P grid scales, respdgtivis used throughout this
section. It is seen from the grid topology (Figtlat within a singleric = 1) 36 km x 36
km pixel of gridC there aren = 16 pixels of gridV, nf = 144 pixels of grid=, andm =9
i.e, number of F grid cells within M.

Two linear operators used frequently in the math@&alaformulation are defined

as:
. 1
Spatial average operator;x) = X Ix da

Spatial anomaly operatorsx = X —(x)

Here,Ais the area of a larger pixel aads the area of a smaller pixel within
Relationships between co-polarized radar backscatté-band and C-band and

volumetric soil moisture have been discussed ir[{h] At L-band, a near-linear

relationship was found using truck-mounted radda d@allected during the Washita 92

field experiment [7]. A linear relationship betweeadar backscatter at L-band and



volumetric soil moisture was also reported for airte observations in the Soil Moisture
Experiment, 2002 (SMEXO02) [8]. The formulation thie algorithm discussed here is
based on such a linear relationship. We use tipothgsis that the volumetric soil
moisture and co-polarized backscatter are lingatgted through:

o(t) = a + plog[o ()] 1)
At a given scaley andp are parameters that depend on vegetation covetypads well
as surface roughness. They vary seasonally anbecastimated at scaleusing SMAP
L2 SM_P and L1C_SO_ HiRes data time-series as regmesand regressors as in

6(Ct) = (C) + B(C)log[a(M,,1)]) (2)
Here,a(Mp,t) is co-polarized radar backscatter at spatiakeddalandd(C,t) is volumetric
soil moisture at spatial sca@ In this sectioriog represents 16gi0. The co-polarized
backscattew(My,t) is obtained by aggregatingFn,t) within M, which is effective for
reducing speckle noise. The estimation of parammetfC) and f(C) uses a time
sequence of SMAP data, implying that this is a t8ages approach. The algorithm
takes advantage of the conical scan and constaid-dogle of the antenna beam
approach of SMAP. Except where azimuthal effecessignificant, the constant look-
angle reduces the variations in t{€) andp(C) parameters.

Formulation of the algorithm begins with the hypegized linear relationship
between volumetric soil moisture and co-polarizadiar backscatter at spatial sdslleso
that (1) can be written as

O(M,, 1) =a(M,) + B(M, )log[c(M,,,1)] 3



wherea(M,) and (M) are empirical parameters at spatial scal®pfandd(M,t) is a
soil moisture value at a spatial scaldvbfind at time for a particular pixel withirC. By

spatially averaging both side of (3), we obtain:

(O(M,,1)) =(a(M,)) + B(M,))log[o(M,,1)])

4
={a(M,))+{B(M,)log[o(M,,t)]) (4)
Subtracting (4) from (3) gives

SO(M,,t) = 6(M,,t) —(6(M,,,1))
=a(M,)+ B(M)log[c(M,,)]-(a(M,))—(B(M,)log[c(M,.1)]) 5)
= {a(M,) —(a(M ) }+ {B(M)log[o(M,,,1)] - (B(M,)log[c(M,,1)]) }

A major assumption is now introduced that allowwelgpoment of a robust
algorithm, but at the cost of increased error dudand cover heterogeneity. It is
assumed that significant variations in the pararsetéM,) and fp(M,) related to
vegetation type, vegetation cover and surface roegh are homogeneous witln In

this casex(M,)) =(a(M,)) = (C) andB(M,) =(B(M,))=B(C). Now (5) becomes:
56(M,,t) = B(C){loglo(M,,t)] - (log[a(M,,t)]) } (6)
The complete algorithm for the hydrometeorologale (9 km) soil moisturé(M , ,t)

can then be written using (5), (6), af@M,,,t)) = 6(C,t), as

O(M._,t) = O(C,t) + SO(M,,,t)

7
=6(C,t)+ B(C){log[c(M,,)] - (log[a(M,,,)]) } ()

The parametef(C) is based on the time-series regression in (4)is ® similar to the
determination of time-series regression paramelisrsissed in [8].0(C,t) in (2) and (7)
are obtained from the SMAP L2_SM_P producg[o(M,,t)] and its spatial average
(loglo(M,,1)]) are obtained from the SMAP L1C_SO_HiRes product tnen linear

regression is performed to obt#C). The main assumption of the algorithm concerning



the scales of heterogeneity of paramgt@an be relaxed as the repeated application of
the algorithm shows a consistent relationship betwg and vegetation/surface
characteristics. Results frobu et al. [10] indicate that the relative sensitivity of lafid
co-polarized radar channels depends primarily @ wbgetation canopy opacity (i.e.,
vegetation water content). Simulations conducted9% for L-band co-polarized radar
backscatter using the integral equation model stiatvsurface roughness variability has
a lesser effect on the radar soil moisture seirisitiAirborne field experiment data and
theoretical models can be used to derive the degperedof co-polarized radar backscatter
on vegetation. With such a relationship, high-h&mn ancillary data on vegetation
(e.g., an optical/infrared vegetation index\d) or a radar vegetation indeR\l) [7]
derived from SMAP co- and cross-polarized radaadean be used to adjust the slope
parametep at scaleM as in:

BM,, 1) = f[BC)VI] (8)
Preliminary experiments with numerical simulatioasd field data indicate that it is
indeed possible to formulate such a relationshap Will reduce errors of the algorithm.
In this study we use the original version of thgosithm given in (7) in order to estimate

and understand the upper bound of error in theritifgo.

3. Test Datasets

There are few real and synthetic data sets availab test the algorithm
developed here specifically for SMAP mission. Pireant among the available data are
the Passive and Active L-band System (PALS) [11ad®t from the SGP99, SMEXO02,

CLASIC and SMAPVEXO08 field experiments, and the Kyl Observation System
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Simulation Experiment (OSSE) data set [12], [13heTPALS sensor is an airborne
instrument and has a spatial resolution of appratehy 0.4 km (depending on flight
altitude). The PALS dataset from SMEXO02 is usediaty to test the algorithm. The
reason of using the PALS SMEX02 dataset is thelavisiy wet and dry soil moisture
status, and range of vegetation conditions witie PALS flight domain for the
campaign duration. PALS was flown over the SMEX@®gion (the Walnut Creek
watershed, lowa) for eight days during the monthdume and July, 2002. However, to
fully test the algorithm performance a synthetitadat covering a longer time series and
a larger regional extent is required. Therefore ftur-month (April ¥, 1994 to July 31,
1994) OSSE data set created for the Hydros missias also utilized for algorithm
testing. The OSSE data were created by simulatimggh-fesolution land surface
geophysical variables from a distributed land stefenodel (TOPLATS) within the Red-
Arkansas river basin. The basin domain and sinargieriod incorporate a diverse range
of land cover classes and soil moisture values. gdwphysical variables were used to
derive simulated brightness temperatures and rbdekscatter cross-sections over the
basin according to the Hydros sensor observatiomafiguration (the same configuration
used by SMAP). The simulated sensor measuremeitts,appropriate instrument and
environmental noise added, were then inverted tigeve soil moisture using various
retrieval algorithms. The forward models used toivéebrightness temperatures and
radar backscatter cross-sections are describeeltail ¢h [12] and [13]. A caveat of using
the forward model as mentioned in [12] and [13]ctompute radar backscatter cross-
sections is that it does not include the influenéevegetation structure pertaining to

different crop types.
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The OSSE generated geophysical variables and atietusensor observations at a
spatial resolution of 1 km. Subsequently, the knghs temperatures and radar
backscatter cross-sections were aggregated wittoppgte errors to simulate the SMAP
observations at the radiometer (36 km) and rad&n{Bresolutions. The radiometer-only
soil moisture product (L2_SM_P) is derived from thggregated 36-km brightness
temperature [12]. The accuracy of the retrieved3M P soil moisture product varies
with vegetation water content (VWC). For this stwde assigned a Root-Mean-Square-
Error (RMSE) to the 36-km soil moisture values ddto 0.04 criicn?, linearly with
increasing VWC from 0 to 5 kgfmbased on the results of [12]. The radar backescat
cross-sections were aggregated to 3 km and a nezasot error oK, = 0.16 was added
to simulate the SMAP 3-km radar L1C_SO_HiRes meaments. These data were then
spatially aggregated from 3 km to 9 km for inputth® algorithm.K, is the radar
normalized measurement relative error that depemdthe signal-to-noise ratio (SNR)
and the number of independent samples or 'lookstaged in each measurement.
Additional synthetic experiments were conductedtglingK, error valuesf 0.18, 0.2,
and 0.22 to evaluate the sensitivity of the ougmit moisture product (9 km) ti§, errors

in a(M,,t). The results and performance of the algorithm dhase these inputs are

discussed in the next section.

4. Retrieval Results
4.1. Test of Algorithm using SMEX02 PAL S data
This study applies the PALS SMEX02 dataset to tltiva/Passive algorithm

(Section 2). PALS L-band radar and radiometer hamelar frequencies and incidence
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angle like SMAP, however, PALS have much finer gppaésolution (~0.8 km). To apply
the Active/Passive algorithm, the PALS data wernddgd at different resolutions, for
radiometer at ~4 km and radar at ~0.8 km. The coatlin of T, ando, data from
PALS data was considered for Active/Passive algoritbecause of higher degree of
correlation observed between them. Figure 2 ilaiss degree of correlation between

Tz anda,, for different possible combinations of radar aadiometer data obtained

from the PALS data of SGP99, SMEX02, CLASIC and JMAX08, which clearly
indicates a better result fdi;, andg,,. Therefore soil moisture retrieved froTg, is
expected to correlated better wit)..

Soil moisture € at 4 km) is retrieved fronTz, at 4 km resolution using a
microwave emission (Tau-omega) model that is based layered single scattering
model commonly used for passive microwave sendighbeand [5]. Ancillary data (e.g.,
surface soil temperature, soil roughness, vegetataer content) of SMEX02 were used
to run the microwave emission model. Figure 3 shoies griddedT;. (4 km) and
corresponding retrieved(4 km) as shown in Fig. 3a and 3c. The valuesf cdre
estimated using regression on pairs &(f4 km) and{z,,(0.8 km)) for every 4 km grid
cells over the SMEX02 duration. The regressiondgedn error of estimation as well as
the expected statistical slogk The robustness of is subjected to the number of
available #(4 km) and{z,, (0.8 km)) data pairs. For SMEX02 dataset there are 8 such
pairs that lead to slightly larger error of estimatfor f. However, the derive@@ was
used in the Active/Passive soil moisture disaggiegalgorithm (7) for all the sixteen 4
km grid cells within the PALS domain, to disaggrega(4 km) to obtain high resolution

0 at0.8 km (Fig. 3d).
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To validate the retrieved soil moisture estimate$.8 km resolution, the field
averaged soil moisture calculated fromsitu measurements in 31 fields over 4 day8 (5
July, 2002 to 8 July, 2002) are used (Fig. 4). The representapatial resolution of a
field is nearly ~0.8 km making the comparison cotilgp@ It is obvious from Fig. 4 that
even with slightly higher error of estimation féthe Active/Passive algorithm (RMSE:
0.035 [cni/cm’]) outperforms the minimum performance (RMSE: 0.0a&*cm’]). The
minimum performance is a reference for comparitois.essentially a resampling of soil
moisture atd (4 km) to finer scale (0.8 km) without use of infaation from the radar.
With decrease in error of estimation foor in other words increasing the number of data
pairs @(4 km) and {s,,(0.8 km))) will enhance the robustness pfand consequently
decrease the RMSE in the disaggregated high résolsbil moisture estimates. Results
from this study establish the applicability of A@iPassive algorithm. However, this
study does not address the impact of differentldewd noise in radar data on the
Active/Passive algorithm because the PALS radaa Have a very low noise floor level
(~-40 [dB]). The subsequent subsection that uslite synthetic data discuss the impact

of different levels of noise in radar data on thetive/Passive algorithm.

4.2. Test of Algorithm using Synthetic Data
The Active/Passive algorithm was applied on all 86&ekm pixels of the Red-

Arkansas river domain of the OSSE data (as destiib¢he Section 3), to evaluate the

slopess,,(C) and f3,,(C) from the co-polarized (VV and HH) backscattey, (F.,.t)
andahh(Fm,t), respectively. A higher correlation for VV tharHHvas found between

the aggregatedr(Fm,t) and G(C,t) in the observing system simulation fields. Hence,
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outputs based om, (F,,t) input to the algorithm yield slightly lower RMSErers than
for ,,(F,.t), in agreement with the results of [8]. Figurdlstrates a sample of the

ground truth soil moisture at 9 km, the radiometely coarse resolution soil moisture at

36 km, the co-polarized radar backscattgfF,,t) at 3 km, the algorithm-retrieved high
resolution soil moisturd,,(M,t) at 9 km based o,,(C), and VWC at 36 km for DOY

130, 1994. The retrieval result (Fig. 5d) showet tiine algorithm captures the higher-
resolution soil moisture variability otherwise madkby the radiometer-only coarse
resolution soil moisture estimates (Fig. 5b), arldilats the correct spatial patterns seen
in the ‘truth’ soil moisture (Fig. 5a).

For the 122-day duration of the OSSE simulationRIMSE of the retrieved soil
moisture outputs at 9-km resolution were computed ewvaluate the algorithm
performance. Figure 6 shows the temporal evolutbrthe standard deviation (Std.
Dev.) and mean of the retrieved soil moisture figladd the retrieval RMSE, averaged for
each day over the entire river basin (OSSE domalitje algorithm captures the typical
soil moisture dynamics (Fig. 6), in which the stamb deviation increases with initial
drydown due to increasing spatial variability, dnein gradually decreases because of dry
soil surface conditions. At a regional scale, tlgpdathm also displays the robustness by
constraining the regional RMSE fluctuations witl@nrange of ~2.8 — 3.3% Vol. soil
moisture for a corresponding range of ~7 — 12% -abd — 32% Vol. soil moisture in
regional standard deviation and mean, respectivelyg. also interesting to see that the
regional RMSE stays close to 3% Vol. soil moistimethe whole duration of the study

period.
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The next logical step was to evaluate the improveméthe high-resolution soil
moisture fields at 9 km derived from the activefras algorithm (L2_SM_A/P) over the
‘minimum  performance’ fields that could be derivedsing radiometer-only
measurements. Minimum performance soil moistur fieere obtained by re-sampling
the radiometer-only soil moisture values at 36 ki SM_P) to high resolution 9 km
pixels. The soil moisture values at 36 km (L2_SMrépresent an average estimate, and
to evaluate the minimum performance against therdlgn results, the soil moisture
values at 36 km are assigned to all 9 km pixels fdlbwithin 36 km pixel. So, all the 16
pixels of 9 km resolution that are within 36 km glixave the same soil moisture values.
Hence, the minimum performance estimates at 9 knmmalo capture the underlying
heterogeneity (variability) that is identified blget algorithm using the high resolution
radar backscatteA pixel-wise soil moisture RMSE was computed ove tiver basin
for minimum performance (Fig. 7a) and algorithmriestal (Fig. 7b) for the whole
duration of the OSSE. Visual comparison of Fig.afa Fig. 7b shows an obvious
improvement in soil moisture estimates when thevefdassive retrieval algorithm is
used. To quantify the improvement, a ratio of athm-based soil moisture RMSE to
minimum performance RMSE is shown in Fig. 7c. Blgorithm estimates outperform
the radiometer only estimates (ratio less than one) most of the river basin. In some
parts of the basin the RMSE ratio is close to unifjhese are the eastern and western
forested regions where the radar sensitivity tb oisture is low due to the high VWC
(Fig. 5e). Apart from these regions the active/passalgorithm estimates are

considerably superior to the radiometer-only estasa
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An additional analysis was conducted to examineirtigact of vegetation. The
spatial patterns in the retrieval errors are catesl with the distribution of vegetation
within the river basin. Figure 8 plots retrievedil smoisture RMSE and minimum
performance soil moisture RMSE stratified by theam®WC contained within 9 km for
the duration of OSSE. The algorithm-retrieved soibisture RMSE shows an
improvement of 0.01-0.02 c¥ent soil moisture relative to the minimum performance
RMSE over the entire VWC range. The general irsgeéa RMSE with increase in VWC
as observed in Fig. 8 is due to the masking efiégtgetation on the radar sensitivity to
soil moisture and a positive bias in the retriev@he algorithm performs well (RMSE<
0.04 cni/cn?) for values of VWC below 4 kg/m A sharp rise in the RMSE is observed
for VWC values greater than 4 kgfim A partial reason for this is that the algorithm
performance as tested in this OSSE is susceptiblng low number of 9-km pixels
having VWC > 2.5 kg/fin the OSSE domain.

The detection of soil moisture variability within radiometer pixel at 36 km
depends on the accurate representation of thisaspaterogeneity in the high-resolution
radar backscatter measurement. The inherent kKgdaeasurement error confounds the
actual spatial heterogeneity thereby introducings@urce of error that requires
quantification in retrieved soil moisture at 9 kmA sensitivity analysis of the inpug,
error was performed and the RMSE results stratifigd/WC are shown in Fig. 9. An
increase in RMSE with increase I§f is clearly visible in the plot. However, the ingpa

of increasingK, on the algorithm is not large. This is due to &veraging ofo-(Fm,t)to
o(M,,t) that reduces the effectit,. This analysis reveals that the prominent emor i

the output from the algorithm is the errordfC,t).
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In order to quantify the error due to the assummptim the spatial scale of

variability in the slope parametgr an experiment was carried out whgreas estimated

at scaleM, or 9 km (which is possible with the OSSE datasdte parameterg(M ,)

were then used for the algorithm insteadﬂﬁ(:) in (7). The thick dashed lines in Fig. 9

show that the assumption on the scale of variatibfi does increase the RMSE. The

increase in the soil moisture RMSE averages ab®@0cni/cn’ over the OSSE basin.

5. Discussion and Conclusion
An algorithm has been proposed in this paper foaiabg high resolution (9 km)

soil moisture from SMAP coarse scale (36 km) raditentbased soil moisture estimates
and fine scale (3 km) radar-based co-polarized $xatker cross-sections. The approach
takes advantage of the near-linear relationshipvéet volumetric soil moisture and
radar backscatter cross-section, and the capabilitige high resolution radar backscatter
to capture the spatial heterogeneity of soil meestuithin the radiometer footprint. The
algorithm uses time-series information to determamel refine the slope of the linear
relationship and, unlike in [8] and [9], the algbhm does not require the previous
satellite overpass observations to estimate thegusoil moisture value. This provides
greater operational flexibility. The accumulatioherrors over time that is a potential
feature of [8] is also not encountered in this athon. The algorithm output is an
absolute soil moisture estimate at high resolutibat is an improvement over the
estimation of soil moisture relative change onlypasposed by [9]. It is shown that the
algorithm soil moisture retrieval accuracy reliesat large extent on the accuracy of the

radiometer-based coarse resolution (36 km) soiktuoe inputs, and that the effects of
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radar backscatter measurement random errors caighdicantly reduced by averaging
to the 9-km scale. The algorithm simulations ushgySMEX02 PALS data and synthetic
four-month OSSE dataset are encouraging and suggeshprovement of nearly 0.015
to 0.02 cn¥cn? in soil moisture retrieval accuracy over the minim performance
radiometer estimates. The L2_SM_A/P product iseetgd to meet the mission criterion
of 0.04 cni/cn?® soil moisture accuracy (one-sigma) or better &gions with VWC less
than 5 kg/m. A few caveats in the studies performed here shbalmentioned: (1) For
the OSSE dataset, the confidence in the resultifals with VWC > 2.5 kg/this
limited by the low number of these pixels in theSESdomain. (2) The RMSE of the
L2 SM_A/P retrievals at 9 km can never be less tthen RMSE of the overlapping
L2_SM_P radiometer-only soil moisture estimates3&t km because as an input
L2 _SM_P, the inherent errors in it percolate thtouge L2 _SM_A/P algorithm. (3)
Further studies are required to test the efficacthe algorithm using real observational
data (for example using airborne data sets suchcgsaired by PALS) obtained from
different hydroclimatic regions.

The proposed Active/Passive algorithm can also belied using radar
observations at finer scales (e.g., 3 km). In tlaise soil moisture at finer scales (e.g. 3
km) could be estimated. However, the errors walldonsiderably higher because: (1)
without averaging to the intermediate 9 km scaldaraspeckle noise will be more
evident, and (2) patchiness in vegetation and ahaiudifferences will increase
significantly. Preliminary studies using 3 km radeckscatter cross-section from the
OSSE dataset have been conducted. Results (neh¥hadicate that the soil moisture

retrievals generally did not meet the SMAP soil shaie accuracy requirement of 0.04
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cm’/cnt.  Only at rather low VWC levels (< 2 kgfjndid the 3 km soil moisture fall
below 0.04 crifent, but it did not improve on the minimum performarmenchmark.
Therefore our conclusion, based on the current SMA&rument design, is that
averaging to an intermediate scale (9 km) betwhenadar and radiometer resolutions is
needed for the application of the Active/Passigoathm.

The algorithm needs to be tested in larger studyaios that include greater
diversity in surface characteristics and hydroctimaegions, and to establish optimum
time windows for determining the algorithm parametihat depend on changing surface
conditions. To achieve this, future work on thigaalthm will include study area for
different PALS domains and global extent of OSS&t till facilitate to analyze the
performance of the algorithm for wide range of grdwconditions. Future studies will
also aim at improved parameterization of the smtyitslope (§) relationship as a
function of vegetation characteristics, allowing thffect of vegetation heterogeneity

within the coarse radiometer footprint to be betigdressed.
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Table 1. Proposed data products from the SMAP mission.

Data Product Description Data
Short Name Resolution
L1B SO LoRes | Low Resolution Radas, in Time Order 5x30 km
L1C SO HiRes | High Resolution Radar, on Swath Grid 1-3 km
L1B TB RadiometefMg in Time Order 36x47 km
L1C TB Radiometer § on Earth Grid 36 km

L2 SM_P Radiometer Soil Moisture 36 km
L2 SM_A Radar Soil Moisture 3 km

L2 SM_A/P Active/Passive Soil Moisture 9 km

L3 FIT_A Daily Global Composite Freeze/Thaw State 1-3 km
L3 SM P I?A?)iilgtfrsbal Composite Radiometer Soll 36 km

L3 SM_A/P I?A?)iilgtfrsbal Composite Active/Passive Soll 9 km

L4 SM Surface & Root Zone Soil Moisture 9 km
L4 C Carbon Net Ecosystem Exchange 1 km
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Figure 1. Grid topology of radiometer (L2 _SM_P)daa (L2 SM_A), and merge
(L2_SM_A/P) product. Wheraf and nm are number of area pixels of radar and

merged product, respectively, within one radiometrea pixehc.
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All Observations: SGP99, SMEX02, CLASIC, SMAPVEX0S
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Figure 2: Correlations between different combinagiof T;_ and o, with respect to

radar-vegetation-index (RVI) evaluated from PALStaddaken over four field

experiments.
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e) . f)
Figure 5: Surface soil moisture fields of Red-Ar&as river basin on DOY 130, 1994. a)

Synthetic ground truth soil moisture (9 km), b) Raeter derived soil moisture (36

km), c) Radar backscatt&w(M"’t) with Kp = 0.16, d) Soil moisture field (9 km)
obtained from the algorithm, ) VWC (k¢fyat 36 km resolution, and f) Derived

slope f ) between radiometer-based Soil moisture estifi&zeSM_P) at 36 km and

Uw(Mn ’t) aggregated to 36 km spatial resolution.
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Figure 6: Region standard deviation, mean and RN&®puted from algorithm derived
soil moisture estimates at 9 km for the whole damaiof OSSE. The line in 3c
represents the RMSE usifhestimated at 36 km. (Results based on four-months

synthetic OSSE dataset).
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Figure 7: a) Pixel-wise average RMSE of minimumf@enance radiometer only soil
moisture, b) Pixel-wise average RMSE of algorithemivkd soil moisture estimates

M"’t) having Kp = 0.16 anc?(c’t) having RMSE of 1 to 4 %Vol. soll

using Gw(
moisture for pixels having VWC from 0 to 5 kg/mzspectively, and c) Ratio of
algorithm-based pixel-wise average RMSE to radi@menly minimum performance

pixel-wise average RMSE. (Results based on fourthssynthetic OSSE dataset).
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Figure 8: Average RMSE for minimum performance afgbrithm derived soil moisture

estimates stratified by VWC. (Results based on-foanths synthetic OSSE dataset).
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Figure 9: Sensitivity analysis of the input erransL1C_SO_ HiRes subjected to the
algorithm. The thick dashed line shows the RMSEiestimated at 9 km. (Results

based on four-months synthetic OSSE dataset).
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